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1 Introduction: essential incompleteness and essential

undecidability

This paper is motivated by the following question: what is the weakest theory
that is essentially incomplete or essentially undecidable?

An axiomatic theory T is complete if it is consistent and for every sen-
tence ϕ in its language it is the case that either T ⊢ ϕ (the sentence ϕ is
provable in T ) or T ⊢ ¬ϕ (ϕ is refutable in T ). So if T is consistent and incom-
plete then there exist sentences independent of T, i.e. sentences ϕ such that
T 6⊢ ϕ and T 6⊢ ¬ϕ. A theory is recursively axiomatizable if it (is equivalent
to a theory that) has a recursive, i.e. algorithmically decidable, set of axioms.
A theory S is an extension of a theory T if the language of T is a subset of
that of S and all axioms of T are provable also in S. Gödel 1st incompleteness
theorem, or better, Rosser generalization of Gödel incompleteness theorem,
says that all recursively axiomatizable extensions of certain weak base theory
are incomplete.

The incompleteness theorem applies also to Peano arithmetic, a theory
whose incompleteness is rather difficult to prove using elementary methods.
But still, there is something more to say about incompleteness theorems. Be-
fore they were discovered, incompleteness of a theory could have been seen as
an imperfection in formulation of its axioms: a theory is incomplete because
some axioms are missing. However, if T is a theory to which incomplete-
ness theorem is applicable and if ϕ is any sentence independent of T, the
incompleteness theorem is applicable also to the two (consistent) extensions
T, ϕ and T,¬ϕ of T . So there is no such thing as missing axiom; the the-
ory T is not only incomplete but also incompletable. Thus the incompleteness
theorem urges us to reconsider the notion of incompleteness and leads us to
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essential incompleteness (Tarski, Mostowski, & Robinson, 1953): a theory is
essentially incomplete if all its recursively axiomatizable extensions are in-
complete. Then Gödel (Rosser) theorem in fact says that a certain weak base
theory (which is recursively axiomatizable and of which Peano arithmetic is
an extension) is essentially incomplete.

A theory T is decidable if the set of all its theorems, i.e. the set of all sen-
tences provable in T, is recursive. If T is not decidable then it is undecidable.
Trivially, a decidable theory is recursively axiomatizable, and an inconsistent
theory is decidable. A theory T is essentially undecidable if all its consis-
tent extensions are undecidable. It is known that a recursively axiomatizable
complete theory is decidable, and that a decidable consistent theory has a
decidable complete extension (formulated in the same language). Knowing
these two not so trivial facts, it is an interesting exercise to show that the
two notions, essential incompleteness and essential undecidability, coincide.
So we will use them interchangeably. Note that an essentially incomplete
theory may be complete. It is decidable if and only if it is inconsistent.

An interpretation of a theory T in a theory S is a mapping from formulas
of T to formulas of S that satisfies certain conditions (e.g. preserves logical
connectives and the number of free variables) and maps all axioms of T to
sentences provable in S. Precise definition of the notion of interpretation
is (again) in Tarski et al. (1953). Basic facts about interpretations are the
following. If T is interpretable in S, i.e. if there exists an interpretation ∗
of T in S, then all sentences provable (refutable) in T are mapped, by the
function ∗, to sentences provable (refutable) in S; if S is consistent then T
is consistent, too; and if T is essentially undecidable then S is essentially
undecidable, too. If S is an extension of T then T is trivially interpretable
in S. The incompleteness theorem can be generalized using of interpretabil-
ity: there exists a weak recursively axiomatizable consistent base theory T
such that each recursively axiomatizable theory S in which T is interpretable
is incomplete. Interpretability can be accepted as a measure of strength of
axiomatic theories: if T is interpretable in S but not vice versa then T can
be considered weaker than S; if T is interpretable in S and vice versa, i.e. if
T and S are mutually interpretable, then T and S are equally strong.

2 Essential incompleteness of Robinson arithmetic

It is usually Robinson arithmetic Q that is taken as the weak base theory,
i.e. the theory for which essential incompleteness is stated and proved. It
is defined in Tarski et al. (1953) as a theory with the language {+, ·, 0,S}
containing two binary function symbols, a constant, and a unary function
symbol, and with the following axioms:

Q1: ∀x∀y(S(x) = S(y) → x = y),
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Q2: ∀x(S(x) 6= 0),

Q3: ∀x(x 6= 0 → ∃y(x = S(y))),

Q4: ∀x(x+ 0 = x),

Q5: ∀x∀y(x+ S(y) = S(x+ y)),

Q6: ∀x(x · 0 = 0),

Q7: ∀x∀y(x · S(y) = x · y + x).

Nowadays it is common to add also the symbols ≤ and < to the language of
Robinson arithmetic, and two axioms about them:

Q8: ∀x∀y(x ≤ y ≡ ∃z(z + x = y)),

Q9: ∀x∀y(x < y ≡ ∃z(S(z) + x = y)).

This definitional extension makes it easier to define bounded quantification
and the notion of Σ-formulas (see below).

Evidently the structure N = 〈N,+N, ·N, 0N, s〉, i.e. the structure of natu-
ral numbers with “normal” operations, “normal” number zero, and the suc-
cessor function s where s(a) = a+ 1, is a model of Q. Peano arithmetic PA
is obtained by adding the induction scheme to the axioms of Q. Without in-
duction, i.e. in Q itself, general statements are usually unprovable. Examples
of sentences unprovable in Q are ∀y(0 + y = 0) and ∀x(S(x) 6= x). However,
some general statements can be proved in Q; an example is ∀x∀y(x+y = 0 →
x = 0 & y = 0). Indeed, if y 6= 0 then y = S(z) for some z by Q3. Then
x+ S(z) = 0, and Q5 yields S(x+ z) = 0, a contradiction with Q2. So y = 0,
and from x+ 0 = 0 and Q4 we have x = 0.

The closed terms 0, S(0), S(S(0)), . . . are called numerals and denoted 0,
1, 2, . . . Thus 0 and 0 represent the same closed term; its value in N is 0N,
the number zero. Numerals make it possible to speak, in the language of Q,
about particular numbers.

We write ∀v≤xϕ and ∃v≤xϕ for ∀v(v ≤ x → ϕ) and ∃v(v ≤ x & ϕ),
where v and x are different variables. ∀v<xϕ and ∃v<xϕ are defined analog-
ically. The expressions ∀v≤x , ∃v≤x , ∀v<x , and ∃v<x are called bounded
quantifiers. A ∆0-formula, or a bounded formula, is a formula whose all
quantifiers are bounded. A Σ1-formula is a formula having the form ∃yθ,
where θ ∈ ∆0, whereas a Σ-formula is any formula obtained from ∆0-formu-
las using conjunctions, disjunctions, existential quantification, and bounded
quantification. Any Σ1-formula is simultaneously a Σ-formula.

There are two important facts about Σ1- and Σ-formulas: Σ-completeness
theorem and definability theorem. These are also basic ingredients of essen-
tial incompleteness proofs. Σ-completeness theorem says that each true (i.e.
valid in the structure of natural numbers) Σ-sentence is provable in Q. De-
finability theorem says that for each r.e. set A ⊆ Nk there exists a Σ-formula
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&%
'$

A &%
'$

B
X Y

Figure 1: An essential incompleteness proof

ϕ(x1, . . , xk) that defines A, i.e. satisfies [n1, . . , nk] ∈ A ⇔ N |= ϕ(n1, . . , nk)
for each k-tuple [n1, . . , nk] ∈ Nk. We omit proofs of both theorems as too
laborious (and also known).

The two basic ingredients, in fact definability alone, are sufficient to show
incompleteness of any Σ-sound extension of Q, i.e. of any extension that
does not prove any false Σ-sentence, see e.g. Švejdar (2003). They are also
sufficient to show undecidability of Q. To show essential incompleteness of Q,
one usually needs one of additional conditions like the following:

(i) For each pair A,B of recursively enumerable sets there exists a for-
mula ϕ(x) such that Q ⊢ ϕ(n) for n ∈ A − B, and Q ⊢ ¬ϕ(n) for
n ∈ B −A.

(ii) Weak representability of recursive functions: for each recursive function
f : N→ N there exists a formula ϕ(x, y) such that, for each number n,
Q ⊢ ∀y(ϕ(n, y) ≡ y = f(n)).

(iii) The self-reference theorem: for each formula ψ(x) there exists a sen-
tence ϕ satisfying Q ⊢ ϕ ≡ ψ(ϕ).

A proof of essential incompleteness of Q using (iii) and a proof of (iii) using (ii)
are well known, the reader may consult e.g. Feferman (1960) or Smoryński
(1985). Below in Theorem 3.3 we give a proof of (ii), for a theory weaker
than Q. Proofs of (i) and (ii) usually use some version of Rosser’s trick: if
two or more events may but should not be compatible, they can be made
incompatible by considering which of them occurs first.

A proof of incompleteness that uses properties of recursively enumerable
and recursive sets rather than self-reference can be called structural. We now
show such a structural proof; more exactly, we show essential incompleteness
of Q using the condition (i). The proof is now folklore, I know it probably
from a manuscript by Smoryński. Recall that two sets A,B ⊆ N are recur-
sively inseparable if there is no recursive D ⊇ A such that D ∩ B = ∅; it is
known that pairs of disjoint recursively inseparable r.e. sets exist.

So let S be a recursively axiomatizable extension of Q. We may assume
that S is consistent because otherwise it is incomplete by definition. Let
A and B be disjoint recursively inseparable r.e. sets of natural numbers. Let
ϕ(x) be a formula such that Q ⊢ ϕ(n) for n ∈ A−B = A, and Q ⊢ ¬ϕ(n) for
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n ∈ B −A = B. Put X = { n ; S ⊢ ϕ(n) } and Y = { n ; S ⊢ ¬ϕ(n) }. Since
S is an extension of Q, we have A ⊆ X and B ⊆ Y . The inclusions may be
strict. The sets X and Y are r.e. since S is recursively axiomatizable, and
they are disjoint since S is consistent. So their relationship is as depicted in
Fig. 1. If X and Y were mutually complementary then, by Post’s theorem,
they would both be recursive; recursiveness of X would contradict recursive
inseparability of A and B. So X and Y are not complementary, and we
can take n0 /∈ X ∪ Y . Then S 6⊢ ϕ(n0) and S 6⊢ ¬ϕ(n0). So ϕ(n0) is an
independent sentence and thus S is incomplete.

3 Weak alternatives to Robinson arithmetic

3.1 Grzegorczyk’s theory Q−

In connection with a project to base explanation of incompleteness theo-
rems on a theory different from and perhaps more natural than Q, Andrzej
Grzegorczyk considered a theory Q− in which addition and multiplication
do satisfy natural reformulations of axioms of Q but are possibly non-total
functions. More exactly, the language of Q− is {0,S,A,M}, where A and M
are ternary relations, and the axioms of Q− are the axioms Q1–Q3 of Q plus
the following six axioms about A and M:

A: ∀x∀y∀z1∀z2(A(x, y, z1) & A(x, y, z2) → z1 = z2),

M: ∀x∀y∀z1∀z2(M(x, y, z1) & M(x, y, z2) → z1 = z2),

G4: ∀xA(x, 0, x),

G5: ∀x∀y∀z(∃u(A(x, y, u) & z = S(u)) → A(x,S(y), z)),

G6: ∀xM(x, 0, 0),

G7: ∀x∀y∀z(∃u(M(x, y, u) & A(u, x, z)) → M(x,S(y), z)).

A. Grzegorczyk asked whether Q− was essentially undecidable. Petr Hájek
considered a somewhat stronger theory, with axioms

H5: ∀x∀y∀z(∃u(A(x, y, u) & z = S(u)) ≡ A(x,S(y), z)),

H7: ∀x∀y∀z(∃u(M(x, y, u) & A(u, x, z)) ≡ M(x,S(y), z)).

instead of G5 and G7. He showed that this stronger variant of Q− is essen-
tially undecidable, and also that it is essentially undecidable if the underlying
logic (i.e. the classical first-order predicate logic) is replaced by a weak fuzzy
logic, see Hájek (2007). The following Theorem, proved in Švejdar (2007a),
yields a positive answer to Grzegorczyk’s original question.

Theorem 1 Q is interpretable in Q−. So Q− is essentially incomplete.
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Recall the sentence ∀x∀y(x + y = 0 → x = 0 & y = 0); its proof in Q
was shown above. If ≤ is introduced using axiom Q8, the meaning of this
sentence is ∀y≤0(y = 0). A simple model of Q− can be constructed to show
that this sentence, as well as the (weaker) sentence ∀y(0 + y = 0 → y = 0),
is unprovable in Q−. Since ∀y≤0(y = 0) is a Σ-sentence, Σ-completeness
theorem is (in this sense) false for Q−. On the other hand, one can easily
verify that Σ-completeness theorem is true for Hájek’s variant; that is in fact
a step in the essential incompleteness proof in Hájek (2007).

3.2 The theory TC

Besides the theory Q−, A. Grzegorczyk considered another weak theory, the
theory of concatenation. It has the language {⌢, α, β} with a binary function
symbol and two constants, and the following axioms:

TC1: ∀x∀y∀z(x⌢(y⌢z) = (x⌢y)⌢z),

TC2: ∀x∀y∀u∀v(x⌢y = u⌢v → ((x = u & y = v) ∨

∃w((u = x⌢w & w⌢v = y) ∨ (x = u⌢w & w⌢y = v)))),

TC3: ∀x∀y¬(α = x⌢y),

TC4: ∀x∀y¬(β = x⌢y),

TC5: α 6= β.

The objects of the theory TC can be called texts or strings. The axioms
TC3–TC5 say that α and β are irreducible, i.e. they are one letter strings that
are mutually different. The axiom TC2 is called editor axiom; it describes
what happens if two editors independently suggest splitting a large text into
two volumes: if their suggestions are not identical then the first volume of
one of the editors consists of two parts, the other editor’s first volume and a
text that appears as a starting part of the other editor’s second volume.

According to the paper by Grzegorczyk and Zdanowski (2008), the the-
ory TC was first considered—but in a different context—by Quine, see Quine
(1946), and the editor axiom was formulated by Tarski.

Andrzej Grzegorczyk proved (mere) undecidability of the theory TC in
Grzegorczyk (2005). Later, essential undecidability of TC was proved in
Grzegorczyk and Zdanowski (2008); in fact two different (and both rather
technically involved) proofs of essential undecidability of TC are given in that
paper. The paper Grzegorczyk and Zdanowski (2008) formulates but leaves
unanswered an interesting problem: are TC and Q mutually interpretable?1

1Added in proof, March 2008: this problem has a positive solution, see (Visser, 2007;
Ganea, 2007; Švejdar, 2007b).
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3.3 The theory R

A first step in a full essential incompleteness proof of a theory T (like the
proof that is sketched in Theorem 2 above) usually consists in verifying that
the following five schemes

Ω1: n+m = n+m,

Ω2: n ·m = n ·m,

Ω3: n 6= m, for n different from m,

Ω4: ∀x(x ≤ n → x = 0 ∨ . . ∨ x = n),

Ω5: ∀x(x ≤ n ∨ n ≤ x)

are provable in T . Petr Hájek sometimes called their provability in Q Mrs.
Karp’s lemma. It makes sense to think about these schemes as of a yet
another interesting theory; this theory is called theory R in Tarski et al.
(1953). It makes no difference whether numerals are considered primitive
constants or defined in terms of the successor function S. It however can
make some difference whether ≤ is a primitive symbol or defined in terms
of +. To speak unambiguously, let the language of R be {+, ·, 0, 1, 2, . . . ,≤}
with infinitely many constants as names for natural numbers and with ≤ as
primitive symbol.

An example of a sentence provable in theory R is n ≤ n: indeed, Ω5 says
n ≤ n ∨ n ≤ n. Another example of a provable sentence is k ≤ n for k < n:
indeed, inside R one may reason that if k 6≤ n, then n ≤ k by Ω5; then n is
one of the numbers 0, . . , k by Ω4; that is however impossible by Ω3. These
two examples show that a scheme similar to Ω4, namely

Ω4′: ∀x(x ≤ n ≡ x = 0 ∨ . . ∨ x = n),

is provable in R. The sentence ∀y(0 + y = 0 → y = 0) is unprovable in R,
as can again be easily verified by constructing an appropriate model.

The theory R is considerably weaker than Q in the sense that Q is not
interpretable in R. This fact can be proved by the following argument, due to
Petr Hájek: if Q were interpretable in R, then it would also be interpretable
in some finite fragment of R; it is however easy to verify that each finite
fragment of R has a finite model.

If the scheme Ω5 is removed from R, the resulting theory with only Ω1–Ω4
is not essentially undecidable. This can be seen by mapping the symbols
+ and · to addition and multiplication of real numbers, mapping numerals to
(real) numbers 0, 1, 2, . . . and by mapping ≤ to empty relation; the resulting
model is a decidable structure by Tarski’s theorem on decidability of reals.

However, an interesting theory, named theory R0 in Jones and Shepherd-
son (1983), is obtained by dropping Ω5 and by replacing Ω4 by Ω4′. So
axioms of R0 are Ω1–Ω3 and Ω4′.
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Using, in R0, the implication ← in Ω4′, one can easily prove k ≤ n for
k ≤ n. Also, k 6≤ n for k > n can be proved using the implication → in Ω4′,
and then Ω3. An example of a sentence provable in R but unprovable in R0

is ∀y(0 ≤ y).
A thing to notice is that the Σ-completeness theorem is provable in R0

and thus R0 is undecidable, whereas the scheme Ω5 usually plays a role when
proving some of the additional conditions like (i)–(iii) in section 2. Long
ago, this fact led the author to a conjecture that R0 was undecidable but not
essentially undecidable, and that the scheme Ω5 was intimately connected
to the Rosser trick and to essential undecidability in general. However, a
result of Cobham, mentioned in Vaught (1962) and in Jones and Shepherdson
(1983), throws a doubt (better, ruins) this conjecture: R is interpretable
in R0.

Interpretability of R in R0 directly implies essential undecidability of R0.
However, neither essential undecidability nor interpretability of R in R0 seem
to automatically imply that the self-reference theorem is valid for R0. Never-
theless, we can adopt the Cobham’s result, as presented in Jones and Shep-
herdson (1983), to show that it is valid.

We first define, inside R0, three auxiliary notions. Since the sentence
∀x(x ≤ n & x 6= n ≡ x ≤ n & n 6≤ x) is provable in R0, there are two
reasonable ways of defining strict order. Let us opt for the first and say
that x < y if x ≤ y & x 6= y. Let a number y be regular if 0 ≤ y and
∀v(v < y → v+1 ≤ y). Then a binary relation ⋖ is defined as follows: x⋖y
iff x ≤ y or y is not regular.

Lemma 2 The following facts are provable in R0 for each n:
(a) the number n is regular,
(b) ∀x(x ≤ n ≡ x⋖ n),
(c) ∀x(x⋖ n ∨ n⋖ x).

Proof (a) 0 ≤ n follows from ← in Ω4′. Assume v < n, i.e. v ≤ n and
v 6= n. We have v = 0 ∨ . . ∨ v = n and simultaneously v 6= n. So v is
one of the numbers 0, . . , n− 1. Then Ω1 says that v + 1 equals some of the
numbers 1, . . , n. All these numbers are known to be ≤ n.

(b) Follows directly from (a).

(c) Assume, for example, that n = 3 and reason in R0 again: Let x be given.
We may assume that x is regular because otherwise 3 ⋖ x. So 0 ≤ x. If
0 = x then we are done since 0 ⋖ 3. Otherwise, i.e. if 0 < x, we can apply
the condition in the definition of regular number to v := 0 and obtain 1 ≤ x.
If 1 = x then x⋖3. If 1 < x then we can take v := 1 and obtain 2 ≤ x. Once
again, if 2 = x then x⋖ 3, and if not then 3 ⋖ x.

The previous Lemma shows how the Cobham’s result is obtained: if we
take the formula x = x for the domain and if we map ≤ to ⋖ and map the
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remaining symbols of R0 to themselves, we have an interpretation of R in R0.

Theorem 3 The self-reference theorem is provable already in R0.

Proof The proof has two parts, first verifying that the condition (ii) above,
weak representability of recursive functions, is true already for R0, and then
proving the self-reference theorem itself with the help of this condition (ii).
We omit the second part as standard. The first part is also standard, the only
change being that ⋖ is used instead of ≤. To keep the paper self-contained,
we give the proof of the first part.

So let a recursive function f of one variable be given. Let λ(x, y, v) be a
∆0-formula such that ∃vλ(x, y, v) defines the graph of f in N:

m = f(n) ⇔ N |= ∃vλ(n,m, v). (1)

Let γ(x, y) be the following formula:

∃w(y ⋖ w & ∃v(v ⋖ w & λ(x, y, v)) &

& ∀y′∀u(y′ ⋖ w & u⋖ w & λ(x, y′, u) → y = y′)).
(2)

We claim and verify that γ(x, y) weakly represents f , i.e. that

R0 ⊢ ∀y(γ(n, y) ≡ y = f(n)) (3)

for each n. So let n0 be given. Let m0 = f(n0). Using (1) and the Σ-comp-
leteness theorem, we may take k0 such that

R0 ⊢ λ(n0,m0, k0). (4)

We also know from (1) that

R0 ⊢ ¬λ(n0,m, k) for each m 6= m0 and each k. (5)

Put q = max{m0, k0}. Reason in R0.

We know k0 ≤ q. From Lemma 2(b) we have k0 ⋖ q, and thus (4) yields
∃v(v⋖ q & λ(n0,m0, v)). Similarly, m0 ⋖ q. So the first and second conjunct
in parenthesis in (2) are true for y := m0 and w := q.

To verify the third conjunct, let y′ and u be such that y′ ⋖ q and u⋖ q and
λ(n0, y

′, u). By Lemma 2(b) and Ω4′, both y′ and u must be one of the
numbers 0, . . , q. However, (5) yields m0 = y′. So γ(n0,m0).

Thus we know that the implication ← in (2) is true. To verify →, reason
in R0 again.

Let y be such that γ(n0, y). So there exist w and v satisfying conditions: y⋖w,
v ⋖ w, λ(n0, y, v), and ∀y′∀u(y′ ⋖ w & u⋖ w & λ(n0, y

′, u) → y = y′). By
Lemma 2(c), it is sufficient to distinguish cases w ⋖ q and q ⋖ w. Assume
first that w ⋖ q. Then w must be one of the numbers 0, . . , q. Since v ⋖ w
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and y ⋖ w, also v and y must be one of these numbers. However, (5) says
that λ(n0, y, v) can hold only for such pair [y, v] where y = m0. So y = m0.
Assume now that q ⋖ w. Then we also have k0 ⋖ w and m0 ⋖ w. Since we
know that λ(n0,m0, k0), we can apply the condition ∀y′∀u(. . . ) to y′ := m0

and u := k0. Then y = m0 follows.

Let me finally remark that all axioms of R0 are (can be rewritten as)
Σ-sentences, and thus must be provable in all theories satisfying the Σ-comp-
leteness theorem. So besides essential undecidability, R0 is the weakest theory
satisfying Σ-completeness (in its language). It is also known, see Jones and
Shepherdson (1983), that if the symbol + and the scheme Ω1 is dropped
from R0 then the resulting theory is still essentially undecidable.
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