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1 Introduction

Godel-Dummett logic in general is a multi-valued logic where a truth value
of a formula can be any number from the real interval [0, 1] and where impli-
cation — is evaluated via the Goédel implication function. As to truth values,
0 (falsity) and 1 (truth) are the extremal truth values whereas the remaining
truth values are called intermediate. Gédel implication function = is defined
as follows: a=b=11if a < b, and a = b = b otherwise. The truth functions
of the remaining propositional symbols conjunction & and disjunction V are
the functions min and max respectively. Negation —A of a formula A is in
Godel-Dummett logic understood as A — | where L is a constant for falsity
with a truth value equal 0. Thus truth function of negation is the function
a — (a=0); speaking exactly, a=0=1ifa=0and a=0=0 for all a > 0.

A particular Gédel-Dummett logic is obtained by restricting the range of
possible truth values, i.e. by specifying a truth value set. More exactly, a
logic T' is based on a truth value set V where {0,1} C V C [0,1] if only the
elements of V' can be chosen as truth values of propositional atoms. Then a
propositional formula A is a tautology of that logic T or a tautology of the
set V if v(A) =1 for each truth evaluation v based on V, i.e. for each truth
evaluation v (a function defined on all propositional atoms and extendible
uniquely to all propositional formulas) whose range is a subset of V. One
can easily verify that (i) each truth value set V' such that {0,1} C V C [0, 1]
is closed under all truth functions =, min, and max, (ii) if V3 C V5 then
all tautologies of the Goédel-Dummett logic based on V5 are simultaneously
tautologies of the logic based on V1, and (iii) if two truth value sets are order
isomorphic then the logics based on them are the same (equivalent). Also, to
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show that a particular propositional formula A is not a tautology of a logic T,
a finite number of truth values is always sufficient. Since in many consider-
ations truth value sets correspond to Kripke frames, we call this simple fact
a finite model property and denote FMP. As a result, (iv) all propositional
Godel-Dummett logics based on an infinite truth value set are equivalent.

Thus we can define BG, the basic Gédel-Dummett logic, as the logic based
on the full real interval [0, 1] (or as the logic based on any infinite truth value
set V). Furthermore, we can define the logic G,, as the logic based on
(any) m-element truth value set, containing the two extremal values 0 and 1
and m — 2 intermediate values. We have BG C ... C G4 C G3 C Gy,
where inclusion T} C T between logics indicates that each tautology of T}
is simultaneously a tautology of T5. It is evident that Godel implication
function restricted to two-element truth value set is exactly the classical truth
function of implication, so Gs is the classical logic.

An elegant axiomatization of the logic BG is obtained by adding the pre-
linearity schema (A— B)V(B—A) to a Hilbert-style calculus for intuitionistic
logic. So BG as well as all the logics G,,, are extensions of intuitionistic logic.
An example of a formula (schema) which is a tautology of BG is mAV ——A4,
while AV = A, the principle of excluded middle, is in general not a tautology
either of BG or of any of the logics G, for m > 3.

Godel-Dummett logic is sometimes also called Gddel logic or Gédel fuzzy
logic. It was originally invented by Godel in connection with the question
whether a finitely valued semantics can be developed for intuitionistic logic;
nowadays it is mostly studied as one of the fuzzy logics, see e.g. Hjek (1998).
Dummett’s important contribution is the result that AV B is in the logic BG
equivalent to ((A— B)— B)&((B—A)— A), so disjunction is in Gédel-Dum-
mett logic expressible in terms of the remaining connectives. Canonical ref-
erences for Godel-Dummett logic are the papers Godel (1932) and Dummett
(1959). My motivation to study these logics is probably close to Godel’s:
they are interesting extensions of intuitionistic logic.

In this paper we consider Godel-Dummett predicate logics with an em-
phasis on properties like prenexability and inter-expressibility of quantifiers.
The paper overlaps with Kozlikové and Svejdar (2006) co-authored by my
former student Blanka Kozlikova. In comparison with Kozlikové and Svejdar
(2006), in the present paper we skip some results and most proofs, but we
introduce the notion of characteristic class of a logic and we add some seman-
tical considerations. We also borrow a lot of notions and ideas from Baaz,
Preining, and Zach (2003).

2 Godel-Dummett predicate logics

In Godel-Dummett predicate logic we consider the same formulas as in clas-
sical logic, built up from atomic formulas using the propositional symbols —,
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&, V, and -, and quantifiers V and 3. As to omitting parentheses, we accept
the more or less usual convention that implication — has higher priority than
equivalence =, but lower than & and V.

A multi-valued structure J based on a truth value set V', or a multi-valued

model based on V', has a non-empty domain and a truth assignment that as-
sociates a truth value J(p)le] with every pair ¢, e where ¢ is an atomic
formula and e an evaluation of (free) variables. The truth assignment ex-
tends uniquely to all formulas using the truth functions of logical connectives
defined above, and using the conditions J(Vzy)le] = infoep J(p)[e(x/a)]
and J(3zp)le] = sup,ep J(p)[e(x/a)], where D is the domain of the struc-
ture J, inf and sup denote the least upper bound (infimum) and greatest
lower bound (supremum) respectively, and e(z/a) is the evaluation identical
to e except that the variable x is evaluated by a € D. To ensure the existence
of suprema and infima, we define a truth value set as a (topologically) closed
set V such that {0,1} C V C [0,1]. In full analogy with the classical case,
a formula ¢ is a logical truth of a set V if it is valid in each structure J
based on V, i.e. if J(p)le] = 1 for each structure J based on V and each
evaluation e of variables.
Example 1 Let V = {%, 1} u{ % — % ; k> 2} and consider a language {P}
with a single unary predicate P. Let the domain D be the set {da,ds,d4, ...}
and let the truth assignment be defined by J(P(z))[e(x/dy)] = 4 — +. Note
that the numbering of elements of D is chosen so that we have the same k
on both sides of the latter equality. Then

J QyP(y))le] = sup T (P(y)le(y/dr)] = 3

regardless of e, and J(JyP(y) — P(z))[e(x/dy)] = 3 — + by the definition
of Godel implication function. So J is a structure based on V' in which the
sentence 3z(JyP(y) — P(x)) is not valid because its truth value is 3 under
some (and also any) truth evaluation of variables. Thus that sentence is not

a logical truth either of our V or of the full real interval [0, 1].

One can even think a little further and verify that the existence of a truth
value @ < 1 in V which is a limit of lower values is essential for Example 1 to
work. The sentence Jx(JyP(y) — P(z)) is a logical truth of any truth value
set containing no a < 1 which is a limit of lower values, and in particular it
is a logical truth of any finite truth value set. So Example 1 also shows that
finite model property is not true for predicate Gédel-Dummett logic.

The usual lemma saying that if e; and ey are two evaluations of variables
that agree on all free variables of a formula ¢ then J(p)[e1] = J(¢)[e2]
is true also for multi-valued structures. So if ¢ is a sentence then we can
write only J(¢) without specifying the evaluation e. Also, we will write for
example J(P(d)) instead of the more correct J(P(z))[e(z/d)].
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By a logic we mean any deductively closed set of formulas, i.e. any set of
predicate formulas that is closed under the modus ponens and generalization
rules. Let Gy, the Godel-Dummett logic based on a truth value set V', or a
logic determined by V', be the logic of all logical truths of V. The basic Go-
del-Dummett logic BG is defined as the logic based on the real interval [0, 1],
in symbols, BG = G|g 1}. The logic G, for m > 2 is, as in the propositional
case, the logic based on (any) m-element truth value set. In predicate logic
it is not true that all infinite truth value sets determine the same logic;
this can also be deduced from Example 1. If the properties (i)—(iv) from
the second paragraph of Introduction are reformulated for predicate logic,
(i)—(iii) remain true, but (iv) is false.

The logic BG is axiomatizable, see e.g. Takano (1987). Its axiomatization
is obtained by taking the propositional calculus for BG mentioned above and
by adding one quantifier schema

Si: V(¥ Ve(z) — ¢V V()

where x is not free in ¢ (recall the convention for omitting parentheses above).
Each of the logics G, is axiomatizable as well, see Preining (2003). Baaz et
al. (2003) define two more interesting logics G| and Gy as logics determined
by the sets V| = {0} U{2;k>1}and V; = {1} U{1—+;k >1}
respectively. The formula 3x(3yP(y) — P(x)) is a logical truth of both logics
G| and G1. Baaz et al. (2003) also show that neither G| and Gy nor any logic
based on a countable infinite truth value set is axiomatizable. Petr Hajek in
Héjek (2005) recently obtained more accurate results about the position of
the logics G| and Gy in arithmetical hierarchy.

Recall that, in classical logic, prenex operations are formulated as eight
equivalences, i.e. sixteen implications, and the schema S; is one of only three
prenex implications that are not intuitionistically valid. The remaining two
intuitionistically non-valid prenex implications are

So: (¢ = Fwp(x)) — (v — ¢(x)),
Sz (Vop(z) —¢) — Jz(e(z) — ¥),

where again x is not free in 1. Since S; is so important in the axiomatization
of the logic GB, it seems interesting to think also about Sy and S3 as potential
axiom schemas. So we define S2G, S3G, and PG to be the logics obtained
by adding Ss, or Ss, or both Sy and Ss respectively, as additional axiom
schemay(s) to the basic logic BG. Thus PG is the weakest extension of BG in
which all the classical prenex operations are available. We will discuss some
properties of the logics S2G, S3G, and PG, and we will relate them to the
logics G|, Gy, Gy, known from literature.

The idea to study the extensions of the logic BG given by axioms of
prenexability may look somewhat unusual because these logics are not de-
termined by truth value sets. Our approach is that a schematical extension

Godel-Dummett Predicate Logics and Axioms of Prenexability 5
Char(S2G):
noa€V,a<lis Char(S3G):

no a € V is a limit
of higher values

a limit of lower values

el

\ '

Figure 1: Characteristic classes of S2G, S3G, and PG

of a Gédel-Dummett logic can still be called Gédel-Dummett logic. This is,
I suppose, fully in the spirit of Hdjek (1998).

Let Char(T'), the characteristic class of a logic T, be defined as the class
of all truth value sets V such that all logical truths of T are valid in all
multi-valued structures based on V.

Lemma 2 (a) If Ty C Ty, i.e. if each logical truth of a logic Ty is simulta-
neously a logical truth of Ts, then Char(T;) C Char(T}).

(b) If V is a truth value set and T a logic, then V € Char(T) if and only if
TCGy.

Proof If ¢ is a logical truth of T" then ¢ is valid in any structure J based
on any set in Char(7T). If, in addition, V' € Char(T) then ¢ is valid in any
structure based on V. So ¢ € Gy. On the other hand, if V' ¢ Char(T) then
there exists a structure J based on V and a sentence ¢ € T not valid in J.
Since ¢ ¢ Gy, we have T € Gy . The proof of (a) is similar. "

Theorem 3 QOver BG, the logic S2G is equivalently axiomatized by any of
the schemas

Cp: Fz(Fye(y) — ¢(x)),

E: Va(Vy(e(y) — ¢()) = ¢(x)) — Fzp(z).

Its characteristic class is the class of all truth value sets where no value except
possibly 1 is a limit of lower values.

Proof We show that C; and E are (already intuitionistically) equivalent.
We omit the proof that S, is equivalent to C| because it is known or implicit
in literature, i.e. in Baaz et al. (2003). We proceed informally, the reader
should have no difficulty with formalizing the argument in the appropriate
calculus.

C| = E: Assume that Vz(Vy(p(y) — ¢(x)) — ¢(z)) and let zg be such that
Fye(y) — (o). We have Vy(p(y) — ¢ (20)) = p(20). Since Iyp(y) —p(wo) is
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intuitionistically equivalent to Vy(¢(y) — ¢(x0)), we have ¢(zg). So indeed,
Jzp(x).

E = C;: To show that Jz(Jyp(y) — ¢(x)), the schema E says that it is
sufficient to verify that

Vo (Vz((Fye(y) — ©(2)) — Cyely) — (@) — Cyely) — ¢(x))).

So let  be given. Since A — (B — () is equivalent to A & B — C, and
(A — B) & A is equivalent to A & B, to verify that

V2((3yp(y) — ¢(2)) = Qye(y) — ¢(x))) — Fye(y) — »(z))

it is sufficient to verify that

Vz(3yp(y) & o(2) — »(x)) & Jye(y) — (). (*)

Taking yo such that ¢(yg), which is possible by the right conjunct, and then
applying the left conjunct to z := yo quickly shows that () is true.

Assume now that V is a truth value set such that no its element, except
possibly the element 1, is a limit of lower values. We have to verify that
Jz(Fye(y) — ¢(x)) is valid in any structure J based on V. So let J with do-
main D be given and take ap = J(Jyp(y)) = supyep J (¢(d)). If ap = 1 then
T B Cye(y) — () = supge p T y(y) — 9(d)) > supgep T((d) = 1.
If a least upper bound of a set is not a limit of lower values then it must
be an element of that set. So, in the remaining case where ag < 0, there
exists an element dy € D such that ag = supycp J(p(d)) = T (¢(do)). Then
JFx(Fye(y) — ¢(x))) > T Fye(y) — ©(dp)) = 1. Note that in both cases
the definition of the Gdédel implication function = played a role.

It remains to verify that if the truth value set V' contains a value a < 1 which
is a limit of lower values then there exists a structure J based on V such that
some instance of the schema C) is violated. This is however already clear
from Example 1. n

Since the following Theorem 4 does not involve a new schema (like the
schema E above), we omit its proof. It is however similar to that of Theo-
rem 3.

Theorem 4 S3G is equivalently aziomatized by Jx(p(x)—Vyp(y)). Its char-
acteristic class is the class of all truth value sets where no value is a limit of
higher values.

Characteristic classes of logics S2G, S3G, and PG, and the membership of
the prominent truth value sets V| and Vy, are depicted in Fig. 1; it is evident
that Char(PG) = Char(S2G) N Char(S3G). It is important to observe that

Godel-Dummett Predicate Logics and Axioms of Prenexability 7

S3G
BG
S2G

/NS

PG
GT"""’G;L"G?,;’GQ
G,

Figure 2: Relationships between Godel-Dummett logics

Char(PQG) is rather small: if V' € Char(PG), i.e. if no element of V, except
possibly the element 1, is a limit of other values, then V is finite or isomorphic
to VT‘

It is easy to verify that the schema Va(Vy(¢(y) — p(z)) — p(z)) =Fzp(z),
resulting from replacing the outermost implication in the schema E by equiv-
alence, is also provable in S2G. So we have the following Theorem.

Theorem 5 In S2G and thus in all its extensions, the existential quantifier
is expressible in terms of the remaining logical symbols.

Theorem 6 The relationships between the logics we consider are as shown
i Fig. 2.

Proof S2G C PG and S3G C PG is immediate. S2G C G, follows from
Lemma 2(b), as well as PG C G4. The inclusions G| C G,,, and G; C Gy,
for each m, follow from property (ii) in the Introduction. Baaz et al. (2003)
show that G = (),,>5 Gm. From this we have G| C Gj.

As to non-inclusions, the fact that S3G € G| follows from V| ¢ Char(S3G)
and Lemma 2(b). Also, S2G ¢ S3G follows from Char(S3G) ¢ Char(S2G)
and Lemma 2(a). For the more complicated proof of G| Z PG see Kozlikova
and Svejdar (2006); the proof is also outlined in Section 3 below. [

So, by Theorem 5, the quantifier 3 is expressible in terms of V and logical
connectives in the logics S2G, PG, G|, G1, and all G,,,. Petr Cintula verified
that the schema E, with equivalence as the outermost symbol, is provable
also in logics that we do not consider here, namely in all logics extending
MTL+S2, where the logic MTL is defined in Esteva and Godo (2001). So
also in all these logics the existential quantifier is expressible in terms of the
remaining logical symbols. Petr Cintula also remarked that the fact that the
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existential quantifier is expressible using only the symbols V and — may be
new even for the logic Go, the classical two valued logic.

Further results in Kozlikova and Svejdar (2006) say that the quantifier 3
is not expressible in terms of V and logical connectives in S3G, and the
quantifier V is not expressible in terms of 3 and logical connectives even
in Gsz. Also, for both logics S2G and S3G there exist formulas that are not
equivalent to prenex formulas. To obtain these results, Kripke semantics is
sometimes used as well. It is important to realize that one can work with
a semantics—multi-valued or Kripke—even in the absence of completeness
theorem: for some results, the soundness theorem is sufficient.

While PG is the weakest extension of the basic logic BG in which all
the classical prenex operations are valid, it still seems to be an interesting
problem whether PG is the weakest extension of BG in which any formula is
equivalent to a prenex formula.

3 Remarks on semantics and completeness

The non-inclusion G| € PG asserts the existence of a sentence ¢ € G| such
that ¢ ¢ PG. However, if V is a set in Char(PQG), i.e. if V is finite or
isomorphic to V4 then, by G| C Gy, the sentence ¢ is valid in any structure
based on V. So we conclude that ¢ ¢ PG cannot be shown by taking a truth
value set from the logic’s characteristic class and defining a structure J based
on V such that J(¢) < 1. The logic PG is incomplete with respect to its
characteristic class.

The problem whether PG (or S2G, or S3G) is complete with respect to
some semantics is left open in Kozlikovd and Svejdar (2006). Héjek and Cin-
tula (2006) offer a solution: the logic PG is complete with respect to witnessed
structures. Their result can probably be generalized also for S2G and S3G.
A structure J with a domain D is witnessed if, whenever p(z,y1,..,y,) is a
formula and the variables y1, .., y, are evaluated by elements di,..,d, € D,
the set { J(p(d,dy,..,ds)); d € D} of truth values has both maximal and
minimal element.

Without using the notion of witnessed structure, a structure J satisfying
the definition is constructed in Kozlikovd and Svejdar (2006) to show that
G| € PG. The structure J looks as follows. The truth value set V' contains
a value ag < 1 which is a limit of lower values. There are only finitely many
values greater than ag and all values in V' except ag are isolated. Let @ be
a function from V to V defined by Q(a) = a for a < a¢ and Q(a) = ao
for a > ag. Importantly, the function [a,b] — Q(a = b), from V2 to V, is
continuous. The structure J is chosen so that its domain D is equipped
with a compact topology and so that for each atomic formula ¢(x1,..,z,)
the function [di,..,d,] — Q(JT(p(di1,..,d,))) is continuous as a function
from D™ to V. Then using some topological knowledge and equations like
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Q(min{a,b}) = min{Q(a),Q(b)} and Q(a = b) = Q(Q(a) = Q(5)) one can
show that the function [dy,..,d,] — Q(J(¢(di,..,dy))) is continuous for
every formula . So every set of the form { Q(J(¢(d,d1,..,dy))); d € D}
is topologically closed, and as such it must have both maximal and minimal
element. The set { J(¢(d,d1,..,d,)); d € D} may be not closed, but one
can conclude that it must have both maximal and minimal element, too.

The construction described in the previous paragraph suggests that, in
particular case, it may not be so easy to verify that a given structure is
witnessed.
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