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1 Introduction

Sufficiently strong axiomatic theories allow for the construction of self-ref-
erential sentences, i.e. sentences saying something about themselves. After
the Godel’s paper on incompleteness (Godel, 1931) the self-reference method
found further applications—some are listed below—and became even more
important. Around say 1970 it appeared that the self-reference method was
not only a useful tool, but also an interesting field of study: it became clear
that reasoning about self-referential sentences could be made more transpar-
ent and limitations of the self-reference method could be clarified by using
modal logic. The connections of meta-mathematics to modal logic, especially
after the Solovay’s paper (Solovay, 1976), brought traditional modal logic to
the attention of more mathematically oriented logicians and constituted a
stimulus in modal logical studies.

In this paper we briefly discuss some of the existing modal systems,
putting an emphasis on Rosser modalities, also known as witness compar-
ison modalities, and present one new system of that kind. First we fix some
symbolism and the way we speak about arithmetic and self-reference.

2 Some preliminaries

By arithmetical language we mean the language {+,-,0,S, <, <} with two
binary function symbols, a constant, a unary function and two binary predi-
cate symbols. Its intended realization, or the standard model, is the structure
N = (N, +N, N N g <N <N} where N is the set of all natural numbers
(with zero), +N, -N <N <N are the usual addition, multiplication, unstrict
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and strict ordering on the set N, ON is the number zero, and s is the successor
function a — a + 1. In the sequel we omit the superscript N; so e.g. “4”
can be both a symbol and its standard realization, i.e. addition of natural
numbers.

An example of an arithmetical formula is Jv(v -z = y); it can be read the
number z is a divisor of the number y and denoted = | y. Another example,
constructed using the formula z | y, is Vz(z | x — 2z = S(0) V S(S(0)) | 2).
This formula says that each divisor of x, except the trivial divisor one, is even.
Terms like S(S(0)) are called numerals; the numeral S(S(..S(0)..) with n
occurrences of the symbol S is denoted m. In the arithmetical language,
numerals make it possible to speak about particular numbers.

We sometimes use the sans-serif font for informal reading of syntactical
objects. Whenever this font is used, the reader is expected to think a little
bit about the formula (or, sometimes, the proof) it represents.

The sentence 7 | T resulting by substituting the numerals @ and m for
z and y in the formula x | y is valid in the structure N if and only if, in
reality, n is a divisor of m. This property of the formula x | y is expressed by
saying that the formula z | y defines the divisibility relation in N. One can
check that our second example formula Vz(z | 2 — 2z =1 V 2| z) defines
the set of all powers of two. So let us choose Pow(z) as a shorthand for this
formula; we have e.g. N |= Pow(8) and N  Pow(9).

We identify formulas and other syntactical objects with their numerical
codes under some fixed coding of syntax. So if, for example, ¢ is an arith-
metical sentence then Pow(%) is a sentence saying that (the numerical code
of) the sentence ¢ is a power of two. We do not (need to) know whether this
sentence is valid in N, it may well depend on details of the chosen coding.

If ¢ is a formula then Yo<zg is a shorthand for Yo(v < z — ¢). Sim-
ilarly, the formulas Yo<zp, Jv<zp, and FJv<zp have an obvious meaning.
The expressions Yv<z, Yv<z, Ju<z, and Jv<z are bounded quantifiers.
A formula is bounded, or a Ag-formula, if all its quantifiers are bounded.
A formula is a 31 -formula if it has the form Jxp where ¢ € Ag; a formula is
a X-formula if it is obtained from bounded formulas using (any number of)
conjunctions, disjunctions, bounded quantifiers and existential quantifiers.
Since, for example, the divisibility relation is definable also by the formula
Fv<y(v-x =1y), we may think that the formula x | y is bounded. Similarly,
the quantifier Vz in the formula Pow(z) can be written as Vz<x; so Pow(x)
is another example of a bounded formula.

It is not straightforward to characterize the sets definable by Ag-formulas.
However, a characterization of sets definable by ¥-formulas is known. A deep
theorem says that, although the set of all 3;-formulas is a proper subset of
the set of all X-formulas, the classes of all sets definable by 3;-formulas and
by ¥-formulas coincide: a set A C N¥ is definable by a £;-formula iff it is
definable by a Y-formula iff it is recursively enumerable (r.e.).
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Since the set Thm(7T') of all sentences provable in a recursively axioma-
tizable theory T is recursively enumerable, one can choose an arithmetical
formula Prp(z) € ¥; which defines the set Thm(7) in N, i.e. satisfies the
equivalence T F ¢ < N |= Prp(p) for each sentence ¢ in the language of T'.
The formula Prp(z) can be read the sentence x is provable in T it is called a
provability predicate of the theory T.

Peano arithmetic PA is a theory formulated in the arithmetical language;
its axiom set consists of seven (eight, or nine, in some sources) single axioms
and one schema, the induction schema. The X-completeness theorem says
that each Y-sentence valid in N is provable in PA. A simple consequence of
the Y-completeness theorem is the following. If Prpa(z) is any ¥;-formula
which defines the set Thm(PA) of all sentences provable in PA then, besides
the equivalence PA + ¢ < N = Prpa(®) for any arithmetical sentence ¢,
it also satisfies the implication PA + ¢ = PA F Prpa(®). This implication
is known as the first derivability condition D1I1; it is a property shared by
all provability predicates. There are of course many (true, i.e. valid in IN)
sentences that are provable in PA but the provability of which is not obtained
by an appeal to the ¥-completeness theorem. An example is the sentence for
each x there is a prime number y greater than z; this sentence is not X.

The sentence —Prpa (0 = S(0)), saying that contradiction is not provable
in PA, is denoted Con(PA) and called a consistency statement of PA (based
on the formula Prps(x)). Since PA I/ 0 = S(0), from the fact that the
formula Prpa (z) defines the set Thm(PA) we have N |= Con(PA).

Given a notion like being a power of two or being a (numerical code of a)
sentence provable in PA, it is natural to ask the following question: if ¢ is a
formula that defines that notion in IN, can we take for granted that “canonical
facts” about that notion, if expressed in the arithmetical language using the
formula 1, are provable in PA? The answer is no in general, but yes in many
cases and if the formula 1 is chosen properly. A canonical fact about powers
of two is that a number z is a power of two if and only if z = 1 or 2 = 2.y where
y is a power of two. If powers of two are represented by the formula Pow(x)
defined above then indeed, this fact is provable in PA. It is however not so
difficult to find a formula ¢ (z) which also defines the set of all powers of two
but does not have this additional property.

As to formalized provability, the canonical facts, i.e. the desired additional
properties of the formula Prpa (), are the second and third derivability con-
ditions D2 and D3, where D2 is PA - Prpa (¢ — 1) — (Prpa (@) — Prpa (1))
and D3 is PA F Prpa (@) — Prpa(Prpa(®)). With some effort one can show
that the “normal” choice of the formula Prpa(z) defining the set Thm(PA)
satisfies the conditions D2 and D3 (i.e. satisfies all derivability conditions
D1-D3) for all sentences ¢ and 9. The condition D3 is in fact a consequence
of a more general fact, namely the formalized X-completeness theorem saying
that PA F 0 — Prpa(0) for each Y-sentence o. The last thing we need to
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mention is the proof predicate. One can assume that the provability predi-
cate Prpa(z) has the form JyProofpa (x,y) where Proofpa(x,y) € Ag. The
formula Proofpa (z,y) is a proof predicate of PA; it can be read the number y
is a proof of the sentence x.

3 Meta-mathematics and self-reference

The self-reference theorem says that for any arithmetical formula ¥ (x) there
exists a sentence ¢ such that PA F ¢ = ¢(). The sentence ¢ satisfying
PA + ¢=19(9), i.e. provably equivalent to the sentence the sentence ¢ has the
property 1, can naturally be viewed as a first-person sentence, saying | have
the property 1. It is often convenient to view the expression PA F ¢ = ¢ (p)
as an equation, determined by the formula ¢, with an unknown sentence .
So the self-reference theorem ensures that every self-referential equation has
a solution.

A prominent example on the use of the self-reference theorem is Gédel
sentence saying | am not provable in PA, i.e. a sentence v satisfying the con-
dition PA F v=-Prps (7). A second important example is Rosser sentence p
satisfying

PA + p =3y (Proofpa (5p,y) & Yo<y—Proofpa (p, v)), (1)

i.e. saying there is a proof of my negation such that beneath it there is no
proof of myself. Both Godel and Rosser sentences demonstrate incomplete-
ness of Peano arithmetic. An important distinction between these two sen-
tences is that while independence of Rosser sentence is formalizable in PA,
viz PA F+ Con(PA) — —Prpa(p) & —Prpa(=p), only one half of indepen-
dence of Godel sentence can be formalized: PA F Con(PA) — —Prpa (7),
but PA I/ Con(PA) — —=Prpa (=7). Since my point is that properties of self-
referential sentences can be obtained using modal logic, no proofs are given
here.

L. Henkin asked a question whether a sentence saying | am provable must
be provable. In the equational setting, Henkin’s question concerns the equa-
tion PA I k = Prpa (%) for an unknown sentence k. Since this equation has a
trivial (provable) solution 0 = 0, Henkin’s question should be understood as
a question whether any Henkin sentence is provable, i.e. whether the Henkin
equation has, up to provable equivalence, only one solution. The question
brought the problem of uniqueness of self-referential equations to the atten-
tion of logicians and was answered positively in the influential paper by Lob
(1955).

Let PA|y + z denote the theory whose axioms are the sentence x plus all
axioms of PA which are less than y. Our fourth example of a self-referential
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PA +n=3y(=Con(PAly +7) & Con(PAly + =7)). (2)

Any sentence n satisfying this equation has the property that both theories
PA +1 and PA+—n are interpretable in PA, in the syntactical sense of Tarski,
Mostowski, and Robinson (1953). This construction of a symmetrically inter-
pretable sentence is mentioned e.g. in Svejdar (1983), but is in fact distilled
out from Héjek and Héjkovd (1972); so the sentence n could be called Hdjek
sentence. However it should be noted that other self-referential constructions
named by Petr Hajek exist.

4 Self-reference and modal logic

A crucial idea, connecting meta-mathematics and modal logic, is interpreting
the usual modal symbol [, the necessity operator, by formalized provability
expressed by the formula Prpy(x). We directly proceed to modal systems
with two additional “modalities” that are not met in traditional modal logical
studies and that are closely related one to another, the Rosser symbols <, <.

So we consider propositional modal language with propositional atoms,
the symbol L for falsity, connectives —, &, V, the unary modality [, and
two binary Rosser (or witness comparison) modalities < and <. Modal for-
mulas are built up from atoms and | using connectives and modalities, with
the restriction that <, < are applicable only to formulas starting with 0. So
O(@p — p) or ¢ & (Op <OL) are examples of modal formulas. We use —A,
T, A= B, and QA as shorthands for A— 1, 1 — 1, (A— B) & (B — A),
and —[0-A respectively. For omitting parentheses, we assign the symbols
=, < higher priority than binary connectives; among connectives, implica-
tion — has higher priority than equivalence =, but lower that conjunction &
and disjunction V. So p=¢VvOp<Og is the same formula as p=(qV (Op<0g)).

To define the arithmetical semantics for modal formulas with Rosser
modalities we need two auxiliary notions, standard proof predicate and arith-
metical evaluation. A standard proof predicate is an arithmetical formula
Prf(xz,y) satisfying PA + Vaz(3yPrf(z,y) = Prpa(z)) and such that both
Prf(z,y) and = Prf(z,y) are PA-equivalent to a X;-formula (i.e., Prf(z,y) is
a Aq(PA)-formula). The formula Proofpa (z,y) is an example of a standard
proof predicate. It is evident that if Prf(x,y) is a standard proof predi-
cate then the formula 3y Prf(x,y), which may be called a provability predi-
cate associated with that proof predicate, satisfies the derivability conditions
D1-D3. A function e from modal formulas to arithmetical sentences is an
(arithmetical) evaluation based on a standard proof predicate Prf(x,y) if it
commutes with logical connectives (e(A& B) = e(A)&e(B), etc.) and satisfies
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e(0A) = JyPrf(e(A),y),
e(0A <0OB) = Jy(Prf(e(A),y) & Vo<y—Prf(e(B),v)),
e(0A <0OB) = Jy(Prf(e(A),y) & Vo<y-Prf(e(B),v)).

Thus the modal formulas JA=<0OB and JA<OB can be read “A has a proof
which is less than or equal to (or less than, respectively) any possible proof
of B”. It is natural to read the formula [JA as “A is provable” rather than
“A is necessary”.

A modal formula is a PA-tautology if PA F e(A) for each evaluation e
based on any standard proof predicate Prf(z,y).

Note that an evaluation is fully determined by its values on propositional
atoms and that a value e(A4) of a formula A depends on only those atoms
that occur in A. So if A is a formula like =[J_L, containing no atoms, e(A) is
the same sentence for each e. Also note that if A contains no occurrences
of <, < then e(A) is equivalent to a sentence constructed from values of atoms
using only logical connectives and the formula Prpa (z); in this sense e(A) is
independent of the choice of the proof predicate Prf(x,y). This follows from
the fact that if OB is any subformula of A then e(0JB) is PA-equivalent to
PrpA(e(B)).

The formula O(L — p) is an example of a PA-tautology because PA
knows (can prove) that ex falso quodlibet. The formula =L is not a PA-
tautology because its value e(A) is (for each e) the sentence Con(PA) which,
by Go6del Second Incompleteness Theorem, is not provable in PA. Now re-
call that e(L) is 0 = S(0) for each e, and that e(T) is provable and e(L) is
refutable in PA. So if e is based on a standard proof predicate Prf(z,y) then
N | 3yPrf(e(T),y) and N F JyPrf(e(Ll),y). Hence N = Prf(e(T),m)
for some m and N |= —=Prf(e(L),k) for each k. Since Y-completeness is
applicable to both formulas Prf and —Prf, we have PA F Prf(e(T),m) and
PA +VYo<m—Prf(e(L),v). Thus

PA F 3y(Prf(e(T),y) & Yo<y-Prf(e(L),v)).

This argument shows that JT < L is another example of a PA-tautology;
PA knows that the trivially true sentence =(0 = S(0)) has a proof less than any
proof of contradiction without discussing the existence of a proof of contradic-
tion. Now consider, as our final example, the two trivially provable sentences
=(0 = S(0)) and Prpa(—(0 =S(0))) which are the values e(T) and e(TJT)
of the modal formulas T and OT under any evaluation e. It is possible to
choose a standard proof predicate Prf(z,y) and an evaluation e based on it
such that, in the sense of Prf(x,y), the first proof of e(dT) is less than the
first proof of e(T). Then PA I/ ¢(OT <O0OT) and so OT < OOT is not a
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PA-tautology. The same argument together with a choice of another proof
predicate shows that neither JOT < OT is a PA-tautology. This example
demonstrates why the notion of standard proof predicate is useful: letting
the proof predicate vary, i.e. opening the possibility of artificial reordering
proofs, is a means how to get rid of irrelevant facts (possibly depending on
details of coding of syntax) about ordering of proofs.

The modal logic R of Guaspari and Solovay (1979), the classical theory of
witness comparison, has the following axiom schemas A1-A4, B1-B4, and P
and deduction rules MP, Nec, and Un:

Al: all propositional tautologies,

A2: 0O(A— B)— (0OA—0OB),

A3: OA—-0O0OA,

A4: OOA— A)—OA,

MP: A, A—B / B, Nec: A / OA,
Un: 0OA / A,

Bl: OA<0OB—-0A,

B2: 0A<X0B&OBx0OC—0OA<0OC,

B3: OAvOB—-UOA<X0OBvVOB<0OA,

B4: OA<0OB=0A=<0OB&~(OB=<0A4),

P: 0A<0OB—0OUA=<0B), 0A<0OB—0O(0A<0OB).

The restriction of the logic R to the usual modal language, with [J as the
only modality, axioms Al-A4, and rules modus ponens MP and necessita-
tion Nec, is provability logic GL. Nowadays, there is a rich literature about
provability logic. The logic R as well as the other systems mentioned below
are conservative extensions of provability logic. There is no need to add the
unnecessitation rule Un to provability logic because Un is a derived rule in
that logic. The schema P could be called a persistency schema. We keep
it a little bit apart from the basic arioms B1-B4 about witness comparison
because we will discuss some alternatives to it.

The logic R is complete with respect to the arithmetical semantics. It also
has a satisfactory Kripke semantics and is decidable; which is quite surprising
in the light of the highly inefficient nature of the arithmetical semantics. Out
of these facts, it is rather straightforward to verify soundness of all axioms
and rules, perhaps with an exception of A4, the Lob axiom schema. Note
that soundness of Nec, A2, and A3 follows immediately from the derivability
conditions, while soundness of the schema P follows from the formalized
Y.-completeness theorem.

Consider the modal formula

O(p=U-p < Up) — (-0L — =Up & -O-p). (3)
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It says that “if p is provably equivalent to the statement saying that there
is a proof of —p which is less than any proof of p, then, under the assump-
tion of consistency, neither p nor —p is provable”. Formula (3) is an exam-
ple of a formula provable in R; this fact is left as an exercise because we
give a similar proof in our logic SR below. Then, by arithmetical sound-
ness of the logic R, the arithmetical value of formula (3) is provable in PA
under any evaluation. Let e be an evaluation sending p to the Rosser sen-
tence p. For this evaluation we also have PA I e(O(p = O-p < Op)) and so
PA F e(-0L — —0Op & —=0O-p). Since e(—-0L — —0Op & —-0O-p) is the sen-
tence Con(PA) — —Prpa (p) & =Prpa (5p), we have proved the fact mentioned
above when speaking about Godel and Rosser sentences: independence of the
Rosser sentence p is formalizable in PA.

The reasoning in the previous paragraph is an example of a “direct”
application of modal logic: properties of a particular self-referential sen-
tence can be obtained by proving appropriate modal formulas in an ap-
propriate modal system. Here is another example of a direct application
of modal logic in meta-mathematics: from provability of the modal formula
O(p=-0p)— (0L —-0p) in R (and in GL) we get that PA proves the sen-
tence Con(PA) — —Prpa (7) expressing formalized unprovability of the Godel
sentence v. An example of a very nice and less direct application of modal
logic is this: a sentence like p, whose full independence (unprovability and
unrefutability) is formalizable in PA, cannot be obtained by Gddelian self-
reference, i.e. by writing down an equation PA F ¢ = ¢() with ¢ speaking
about provability only, not employing things like the Rosser trick. Out of
our examples, Godel and Henkin sentences are obtained by Godelian self-
reference, Rosser and Héjek sentences are not.

5 Alternative systems with Rosser modalities

The Héijek sentence (2) says that a number y such that =Con(PAly + 7)
appears before any possible v such that —~Con(PA[v + =7); so it in fact also
uses the Rosser trick. Moreover, the formula 3y—Con(PA[ y+—z) is equivalent
to Prpa(z); so it can be viewed as a generalized proof predicate, and a y such
that =Con(PAly + —x) can be viewed as a proof of x in a generalized sense.
Put together, the Hajek sentence is a sort of a Rosser sentence. However, the
modal system R does not appy to it because the sentence is not a -sentence.
Speaking otherwise, if evaluations e based on the generalized proof predicate
are allowed, then the formalized Y-completeness theorem is not applicable to
sentences of the form e(JA <0OB) and e(JA < OB), and thus the schema P
is not arithmetically sound.

A modal system applicable to the Héjek sentence was proposed in Svejdar
(1983). The system is denoted Z there; it results from replacing the schema P
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by another schema Z:
Z: 0OA—-0O(-B—-0A<0OB).

This schema says that “if A is provable then it can be proved that it has
a proof smaller than any proof of any false statement B”, or more briefly,
“false statements do not have small proofs”. It is not difficult to verify that
formula (3), the modalized Rosser theorem, is provable also in the logic Z
and that the schema Z is provable in the logic R. Soundness of the schema 7
w.r.t semantics where evaluations can be based also on the generalized proof
predicate ~Con(PA[y + —x) follows from Theorem 1 below. So (formalized
or not) independence of the Héjek sentence is in fact a consequence of modal
considerations. It is also known (Svejdar7 1983) that the logic Z has a Kripke
completeness theorem and is decidable.

Independence is not the only important property of the Hajek sentence by
far. But since the system Z cannot prove any formula which is not provable
in R, it offers no modal explanation why the Héjek sentence (2) should be
important. The goal of this paper is to suggest a system stronger than Z
that could express what Héjek sentence and similar constructions have in
comparison to the usual Rosser sentence.

Let a (modal) X-formula be any formula obtained from formulas starting
with O and from L and T using only conjunctions and disjunctions. Let S
be the schema

S: OF—-A)—-0OFE&-B—0A<0OB),

where E is a X-formula and A and B are arbitrary modal formulas. Let SR
be the system like Z, but with the schema Z replaced by the schema S. The
notation is somewhat tentative: The letter “S” refers to Greek ¥ because
the logic SR is a Rosserian system with a special attention to arithmetical
Y-sentences, or “SR” can mean “semi-reflexive”.

Theorem 1 The logic SR is sound w.r.t. the arithmetical semantics with
evaluations based on the generalized proof predicate —~Con(PA[y + —x).

Proof We show arithmetical soundness of the schema S. A key step is to use
the essential reflexivity of PA: the implication y — Con(PA[ k+7Y) is provable
in PA for each m and each sentence x. So let modal formulas A and B, modal
Y-formula E and an evaluation e based on the generalized proof predicate
be given. Let ¢, 1, and o be the arithmetical sentences that are the values
of formulas A, B, and E (respectively) under v. We have to prove in PA
that if 0 — ¢ is provable then one can prove, using the assumptions ¢ and =),
that @ has a generalized proof smaller than any generalized proof of 1. We
shift the speech one level up, giving a meta-mathematical argument. The
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real proof of the theorem is then obtained by formalizing the considerations
in PA, i.e. essentially by rewriting the argument using the sans-serif font. So
let PA+ o — ¢. We have to show

PA + o & —1p — Fy(—Con(PA[ y + =p) & Yo<yCon(PA[v + —1)).  (4)

Note that Vv <yCon(PAJv + =) is the same as Con(PA[y + —). A fixed
proof of 0 — ¢ uses only a finite number of axioms of PA. So if m; is suffi-
ciently big then the axioms of PA less than m;, together with the sentence
—(0—), constitute a contradictory theory. Thus, in fact by ¥-completeness,
we have PA - —Con(PA| 1 + =(0 — ¢)). An inspection of the proof of for-
malized X-completeness yields an mg such that PA + 0 ——Con(PA|Tg+=0)
for (each and thus) our sentence o. So if m = max{mg, m1} we have

PA+ 0 — =Con(PAl ™ + =9), (5)

m is a generalized proof of ¢. Essential reflexivity applied to the sentence 1
yields PA + —¢p — Con(PA|m + —). This and (5) implies (4), q.e.d. "

Note the difference between the proof predicate —Con(PA[y + —z) and
the standard proof predicate Proofpa (x,y): there is no common mg such that
o — Ju<Tng Proofpa (7, v) is provable for each Y-sentence o.

A substitution of J1, 1, and O for A, B, and E in the schema S yields
O(OL —-0O0L <dL). Then, using the rule Un, we get 01 — O0L <L,
This formula, as well as the formula OO — OO < 1, are examples of
formulas provable in the logic SR but unprovable in R. As an exercise, the
reader may try to derive the latter from the former by distinguishing cases
01 and =0OL. A further example of a formula provable in SR is

O@p=0-p<0p) — (O(E —p) VOE — -p) - O-E), (6)

for any Y-formula E. For, let D be O(p=0-p < Op). Then the proof of (6)
in SR may proceed like this:

O(F —p) —»0O(F &p— Op < O-p) ;S

O(E — p) — O(E — Op < O-p)

O(F —p) —»0O(F — Op x0O-p) ; B4

O(E — p) — O(E — ~(0-p < 0p)) ; B4
D —0O(p— O-p=<0p)

D &O(E —p)— O(F — O-p<0Op)
D &O(E —p) — O-E,

where the seventh line follows from the sixth and fourth. The proof of the
second half, D & O(FE — —p) — O-FE, is similar.

On Modal Systems with Rosser Modalities 11

A substitution of T for E in (6) yields formula (3); so (6) is a stronger ver-
sion of modalized Rosser theorem. Formula (6), as well as formula (3), speaks
about properties of the Rosser sentence, i.e. sentence p provably equivalent
to the statement there is a proof of —p which is less than any proof of p. While
formula (3) says that the Rosser sentence is independent provided the base
theory is consistent, formula (6) says that neither p nor —p can be proved
using any assumption expressed by a consistent X-sentence. It is known that,
in PA, the unprovability of a sentence ¢ from any consistent -sentence is
the same as interpretability of PA + —p in PA. This fact is due to Petr
Héjek. So provability of formula (6) in SR together with Theorem 1 yields
the symmetric interpretability of the Hajek sentence.

Speaking precisely, there is a little gap in the conclusion that the symmet-
ric interpretability of Hajek sentence can be obtained modally. Our consid-
erations only show that neither Hajek sentence 7 nor its negation —n can be
proved from a consistent assumption which is a value of a modal X-formula.
Note that values of modal Y-formulas constitute a proper subset of all 3-sen-
tences. To get the full result, one would modify the logic SR as follows:
(i) consider two sorts of propositional atoms, (normal) atoms p, ¢, ... and
Y-atoms o, 7, ..., and (ii) prove a formula like (6), but with E replaced by
a Y-atom o. We did not do this modification to keep things simpler.

To finish, it must be admitted that we are still rather far from a well-
rounded modal system for Rosser modalities. Nevertheless, I believe that the
schemas Z and S do formalize arguments that are quite frequent when dealing
with self-referential sentences that use some version of the Rosser trick.
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