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Abstract We prove that a variant of Robinson arithmetic @ with non-total
operations is interpretable in the theory of concatenation TC introduced by
A. Grzegorczyk. Since Q is known to be interpretable in that non-total
variant, our result gives a positive answer to the problem whether Q is in-
terpretable in TC. An immediate consequence is essential undecidability
of TC.

1 Why weak theories, why concatenation?

Several versions of Godel, Church, and Rosser theorems state the incomplete-
ness and undecidability of every sufficiently strong recursively axiomatizable
(consistent) theory T'. The notion of “sufficiently strong” is usually made pre-
cise by stipulating that T extends Robinson arithmetic QQ, or more generally,
that T interprets Q. Robinson arithmetic Q, see [TMR53], is a theory useful
from more than one point of view. It is finitely axiomatized and thus can be
used in a straightforward proof of undecidability of first-order predicate logic.
It is weak, but some richer arithmetics, like 1A, are interpretable in it.

A natural question reads whether Q is the only or the best theory for ex-
planation of incompleteness and undecidability phenomena. In connection with
this question, A. Grzegorczyk in [Grz05] proposed to study the theory TC, the
theory of concatenation. Instead of numbers that can be added and multiplied,
in TC one has strings that can be concatenated, and there are two irreducible
(single-letter) strings a and b. Some ideas behind formulation of axioms of TC
go back to Quine [Qui46] and Tarski. Grzegorczyk’s motivations to study the
theory TC are philosophical and are explained in Introduction and in the be-
ginning of Section 8 of [Grz05]. Speaking briefly, when reasoning, computing,
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or expressing knowledge, we deal with texts. Our ability to perform these tasks
depends on discernibility, i.e. the possibility to identify and discriminate graph-
ical objects. Thus decidability can be defined directly in terms of discernibility,
without a reference to natural numbers. Then also the proof of undecidability
of first order predicate logic could be more straightforward if based on strings
and concatenation, because it can avoid coding of syntax, and also avoid the
use of mathematical tools like Chinese Remainder Theorem.

The theory of concatenation is an interesting theory regardless whether one
finds Grzegorczyk’s motivations appealing. The paper [Grz05] contains a proof
of undecidability of TC. Later Grzegorczyk and Zdanowski proved essential
undecidability of TC in [GZ08], and left open the question whether Q is inter-
pretable in TC. In the present paper we offer a positive answer to this question.
Since a theory in which Q is interpretable must be essentially undecidable,
see [TMR53], our result not only gives a piece of information missing in [GZ08]:
it also yields an alternative proof of essential undecidability of TC.

A straightforward idea of constructing an interpretation of Q in TC is the
following. Numbers are strings of the form a*, i.e. strings a~a™ .. "a where
a is one of the two irreducible strings and — denotes concatenation. Addition
of numbers is their concatenation. As to multiplication, a¥F - a® = a™ if there
exists a sequence w consisting of pairs such that (i) the first element of w
is [a,a"], (ii) every element [r,y] except the last one is immediately followed
by an element [z a,y " a*], and (iii) the last element is [a",a™]. We basically
follow this idea. However, there are some difficulties to be solved. For example,
some expected properties of strings, like VzVyVu(z"u = y"u — = = y), are
not provable in TC. It is difficult or even impossible to define in TC a reasonable
notion of a sequence so that sequences of arbitrary lengths exist. And it is even
not quite obvious how to define strings of the form a* in TC. We show that none
of these difficulties is essential. In particular, it does not matter that TC does
not have sequences of arbitrary lengths, because what we really interpret in TC
is a weaker variant of QQ with possibly non-total addition and multiplication,
not the full Q.

Thus we prove an existence of an interpretation of Q in TC by constructing
an interpretation of a non-total variant of Q in TC and then combining this
result with known facts that the interpretability relation is transitive and that
Q is interpretable in that non-total variant. An obvious choice for the non-total
variant is the theory Q~, accidentally also introduced by A. Grzegorczyk, be-
cause a proof of interpretability of Q in Q™ can be found in [Sve()?]. However,
we will be able to advise a reader who wants to see a self-contained proof how
to avoid reading the somewhat technically involved proof in [Sve()?].

Another proof of interpretability of QQ in TC, obtained independently but
earlier than ours, is in Albert Visser’s paper Growing Commas [Vis09]. While
that paper is more general, the present paper was intended to be short and
single-purpose, listing only those properties of TC needed for the main result.

Visser’s paper, and also the paper [CPR*07], contain also an information about
unprovability in TC and about its models. Yet other proofs of interpretability
of Q in TC, independent of each other and of the present paper, were obtained
by R. Sterken and M. Ganea [Gan09]. M. Ganea’s proof is different from ours,
but it also uses the result in [Sve07], i.e. uses the detour via Q™.

2 Preliminaries: TC, Q7, and the notion of interpretability

We work with somewhat different variant of the theory of concatenation than
in [Grz05] and [GZ08], having an empty string ¢ and having three irreducible
strings a, b, ¢ rather than two. The exact choice of variant is inessential because
all reasonable variants of TC are mutually interpretable ([GZ08, Vis09]). So
our variant of the theory of concatenation TC has the language {7, ¢,a,b,c}
with a binary function symbol and four constants. We systematically omit the
symbol 7 i.e. write zy for the concatenation x ™y of x and y. The axioms of TC
are:

TCI: Ve(re = ex = x),
TC2: VaVyVz(z(yz) = (xy)z),
TC3: VaVyVuVov(zy = uvvo —
= Juw((zw=u & wv=y) V (vw =2 & wy =v))),
TC4: ate & VaVy(rty=a - z=¢ V y=¢),
TC5: b#e & VaVylay=b - x=¢ V y=¢),
TCé6: c#te & VaVy(rzy=c - x=¢ Vy=e¢),
TCT: aZzb & a#tc&b#c.

Our numbering of axioms of TC is more or less as in [Vis09], the difference is
caused by the third letter ¢ we have in the language. By axiom TC2, we can
omit parentheses, and we do so almost everywhere. The axiom TC3 is called the
editor aziom in [Grz05], and is attributed to Tarski. It describes what happens
if two editors independently suggest splitting a large text into two volumes: the
first volume of one of the editors consists of two parts, the other editor’s first
volume and a text (possibly empty) that appears as a starting part of the other
editor’s second volume.

The theory Q~, weaker variant of Robinson arithmetic defined by A. Grze-
gorczyk, has language {0,S, A, M} with a constant, a unary function symbol,
and two ternary relation symbols. The formulas A(z,y,z) and M(z,y, z) ex-
press that “z is the sum, or product, respectively, of x and y”. The axioms
of Q™ are:

A: vayvzleQ(A(x7yazl) & A(:L'ayaZQ) — 21 = 22)3
M: VaVyVz1 Ve (M(z,y, 21) & M(z,y,22) — 21 = 29),



QL: Vavy(S(z) = S(y) — = =y),

Q2 Va(S(x) £0),

Q3: Va(z #0 — Jy(x =S(y))),

G4: VaA(x,0,z),

G5: VaVyVu(Iz(A(z,y, 2) & u=1S(z)) — A(x,S(y),u)),
G6: VaM(z, 0,0),

GT: VaVyVu(Fz(M(z,y, 2) & A(z,z,u)) — M(z,S(y),u)).

Axioms Q1-Q3 are the same as in the full Robinson arithmetic Q, as defined
in [TMR53]. Axioms G4-G7 are Grzegorczyk’s reformulations of axioms Q4-Q7
of Q. They say that the number 0 can be added to any = from the right and that
any x can be multiplied by 0 from the right, with the obvious results. If y can
be added to x from the right then also S(y) can be added to x from the right.
If x can be multiplied by y and the result is z, then it might not be possible to
multiply « by S(y), which happens if the sum of z and x does not exist.

A translation x of formulas of a theory T to formulas of a theory S is deter-
mined by a definitional extension S’ of the theory S, a translation of symbols,
and a domain. A translation of symbols maps each symbol of the theory T
to a symbol of the definitional extension S’ having the same kind (function or
predicate) and arity. A domain is a formula §(x) of S” with one free variable
used to relativize quantifiers in the given translation * of formulas: (Vay)* is
Vz(d(x) — ¢*) and (Fxp)* is Jz(d(z) & ¢*). The remaining logical symbols,
i.e. connectives, are preserved by translation of formulas. One can think of the
domain 6(z) as of the set { z; §(x) }, regardless whether the theory S comes
with a notion of set. A translation x of formulas is a (global, non-parametric,
one-dimensional) interpretation of T in S if its domain §(z) is (provably in S’)
non-empty and closed under all functions in the range of the corresponding
translation of symbols, and if, in addition, * maps all axioms of T' to formulas
provable in S’. A theory T is interpretable in a theory S if there exists an
interpretation of 7" in S.

Interpretability can be taken as a measure of strength of axiomatic theo-
ries. If, for example, T is interpretable in S and vice-versa, i.e. if T and S are
mutually interpretable, then one can conclude that 7" and S do not differ in
strength. It is known that if T is interpretable in S and S is consistent then
T must be consistent, too, and as already noted, if T is essentially undecidable
then S must be essentially undecidable, too. The notion of interpretability, as
well as the notion of essential undecidability and Robinson arithmetic itself,
were defined in [TMR53]. For more information on the notion of interpretation
see e.g. [Vis98]. As also already noted, Q™ is mutually interpretable with Q,
see [Sve07].

3 An interpretation of Q™ in TC

In a series of lemmas, when saying that something is the case we mean “provably
in TC”?, and by proofs we mean proofs in TC. Some of the statements in Lemma 1
also appeared in [GZ08].

Lemma 1 (a) Vz(za # ¢ & ax #€). The same is true for b and c.

(b)) VaVy(lazy = - z=¢ & y=¢).

(c) VaVy(xa=ya V ax = ay — = =y). The same is true for b and c.

(d) VaVyVu(ua =2y — y=¢ V Fy/'(y = y'a)). The same is true for b and c.

Proof (a) Assume za = ¢. Then bza =b. By TC5, bx = ¢ or a = €. However,
a = ¢ is not the case by TC4, while bz = ¢ yields a = b by TC1, a contradiction
with TCT.

(b) If 2y = € then zya = a. By TC4, z = ¢ or ya = . The latter is excluded
by (a). From 2 = ¢ we have ya = a. Using TC4 again, we have y = ¢ or a = ¢.
Soy=c¢.

(¢) Assume za = ya. By TC3 there exists a w such that zw = y and wa = a,
or yw = x and wa = a. In both cases, from wa = a we have w =¢. So z = y.

(d) Assume ua = zy. By TC3 we have a w such that uw = 2 & wy = a, or

zw = u & wa = y. In the second case we can take 3’ := w. So consider the
first case, uw = & & wy = a. By TC4 we have w = ¢ or y = €. If y = € then
we are done, and if w = € then for 3’ := ¢ we have y'a = y. "

We write  C y as a shortcut for IsFt(sxt = y). We read © C y as the
string x is a substring of the string y, or x occurs in y, or x has occurences in y.
We write ¢ ™ y for Jt(at = y), i.e. to say that z is an initial segment of y or
that y begins by x. Similarly, we write x (0 y to say that x is an end segment
of y, i.e. that y ends by x. Using this notation, we can rewrite Lemma 1(d) as
follows: atnay — y =¢ V aldy. We know that if @ y or x T y then
x C y. It is easy to use Lemma 1(b) to show that if x C a then z = ¢ or x = a,
and if x C ¢ then x = <.

Lemma 2 aCxy — alx V aCy. The same is true for b and c.

Proof We have s and ¢ such that (sa)t = xy. By TC3 there is a w such that
saw =x & wy =t, or xw = sa & wt = y. In the first case a C x. In the
second case, from zw = sa and Lemma 1(d) we have w =c oramw. f w =¢
then xw = sa yields a C z. If a 1w then wt = y yields a C y. [

We say that z is a number and write Num(z) if each non-empty substring
of z ends by a. In symbols, Num(z) = Vu(uCx & u#e¢ — allu).

Lemma 3 (a) Any substring of a number is a number. A number has no oc-
curences of b or c.
(b) The strings € and a are numbers.



(c) If = is a number and x # € then x = ya for some (number) y.
(d) If x and y are numbers then xy is a number.

Proof Verification of (a)—(c) is left to the reader. In (d), assume that x and y
are numbers and u is a non-empty substring of xy. We have sut = zy for
some s and t. By axiom TC3, there is a w satisfying suw = = & wy = t, or
xzw = su & wt = y. In the first case u is a non-empty substring of x and thus
must end by a. In the second case, where zw = su & wt = y, distinguish cases
w=¢ and w # €. If w = ¢ then again, u C x and so a (D u. If w # ¢ then w
is a non-empty substring of y. So a 1w, i.e. w = w’'a for some w’. Now from
zw'a = su we have a C1u by Lemma 1(d). "

We take the formula Num(z) as the domain of the interpretation we con-
struct, an interpretation of Q™ in TC. The domain is non-empty by Lemma 3(b).
We define 0 as € and, for a number z, S(z) as ra. And we define the sum of num-
bers x and y to be the concatenation zy, i.e. we interpret A(x,y, z) as zy = z.
By Lemma 3 (b) and (d), our domain is closed under both functions in the lan-
guage of Q, i.e. 0 and S. Validity of axioms Q1-Q3 follows from Lemma 1(c),
Lemma 1(a), and Lemma 3(c) respectively. Validity of axioms A, G4 and G5
is immediate. Note that, for the purpose of interpreting Q~ in TC, addition
could have been a non-total function, but in our setting it is total. It remains
to interpret multiplication.

Lemma 4 (a) Assume that sbu = gbx and u and x have no occurences of b.
Then s = q and u = x. The same is true for a and c.

(b) Assume that sbubt = gbxb and u and z have no occurences of b. Then
either s = q, u=x, and t = €, or there exists a w such that sbubw = ¢b and
wrb = t.

Proof Apply axiom TC3 to (sb)u = (¢gb)z. There is a w such that sbw = ¢b
and wzr = u, or gbw = sb and wu = x. Consider the case sbw = gb and wx = u,
and note that the other case is symmetric. If w # ¢ then b 1w by Lemma 1(d).
Then from wxz = u we have b C u, a contradiction with the assumption that u
has no occurences of b. So w = &. Then z = u, and from sb = gb we have s = ¢
using Lemma 1(c).

In (b), apply axiom TC3 to (sbub)t = (¢b)(zb). If there is a w satisfying
sbubw = ¢gb and wxb =t then we are done.

So suppose that we have a w such that gbw = sbub and wt = xb. We may
assume that w # ¢ since otherwise sbube = gb and exb = ¢, and we are done
again. Then ¢ must be empty: if ¢t # ¢ then from wt = «b and Lemma 1(d) we
would have ¢ = t'b for some t/, from w # €, Lemma 1(d), and gbw = sbub we
have w = w’b for some w’, and then w'bt'db = zb and Lemma 1(c) would yield
w'bt’ = x, a contradiction with the assumption that x has no occurences of b.

From ¢ = ¢ we have w = zb and gbaxb = sbub. Then, using Lemma 1(c) and
using (a) already proved, ¢ = s and x = u follows. n

We say that w is a (product) witness for x X y and write PWitn(z, y, w) if
the following conditions are true:

(i) the strings  and y are numbers,
(i) there is a number z such that byczb CI w,
(iil) VuoVuoVsVi(sbugcvabt = w & Num(uz) & Num(ve) & s #e —
JugFvy (Num(uq) & Num(vy) & uz = wpa & ve = viz & bujcvy OI s)),
(iv) beb D w.
The formula PWitn(z, y, w) roughly says that “w ends by byczb, begins by bcb,
and each its substring buscvsb, which is not an initial segment of w, is immedi-

ately preceded by bujcvy, where us = uy + 1 and vy = v1 +z.” So for example,
bcbacaabaacaaaabaaacaaaaaab is a product witness for 2 x 3.

Lemma 5 Let x and y be numbers.

(a) PWitn(z, e, beb).

(b) Vu'(PWitn(z,e,w') — w' = bcb).

(c) YqVz(PWitn(z, y, gbyczb) — PWitn(z, ya, gbyczbyaczzb)).

(d) Let w' be a witness for x x ya. Then there is a string ¢’ and a number v
such that w' = ¢'bycvbyacvrb, where PWitn(x, y, ¢'bycuvb).

Proof In (a), where in addition y = ¢, the string beb evidently ends by a
string byczb where z is a number, and begins by bcb. So, in the definition of
product witness, it remains to verify the condition (iii). Let ug, v2, s, t be such
that us and vy are numbers and sbuscvobt = beb. Repeated use of Lemma 1
(d) and (c), axiom TC5H and Lemma 1(a) shows that ¢, va, uz, and s must all
be empty. So bcb cannot be written as sbuscvabt with non-empty s, and thus
condition (iii) is satisfied.

We omit the proof of (b) as similar to the proof of (d) given below. In (c),
assume that gbyczb is a product witness for x x y. Think about the string
gbyczbyaczeb. The strings ya and zz are numbers by Lemma 3(d); so con-
ditions (i) and (ii) are satisfied w.r.t.  and ya. Also (iv) is satisfied because
already gbyczb begins by beb. It remains to verify the condition (iii). So con-
sider s # € and ¢t and numbers ug, v9 such that sbuscvobt = gbyczbyaczrb. By
Lemma 2, the strings uscve and yaczx have no occurences of b. So Lemma 4(b)
can be used as follows:

sbugcvy bt = gbyczbyaczxb.

u

In the first case, where s = gbycz, uscvy = yaczz, and t = ¢, one can easily
use Lemma 4(a) and conclude that uz = ya and vs = zz. So indeed, s ends
by bujcv; where us = uja and vo = vyx. In the second case we have a w such
that sbugcvobw = gbyczb and wyaczaxb = t. By the assumption that gbyczb
is a product witness for x x y, the string s must end by bu;cv; as required.



Finally, to prove (d), assume that w’ is a witness for = x ya. We know that w’
ends by byacv’b where v’ is a number, and begins by bcb. So we have strings
t and ¢” and a situation where Lemma 4(b) can be used as follows:

w' = b_c bt=q¢"byacv'b.
~— =~~~ < ,

S u T

The case where ¢ = ¢”, ¢ = yacv’, t = ¢ is impossible, ¢ cannot have a
substring ac. So we have a w such that bcbw = ¢”b and wyacv'd = ¢. From
becbw = ¢’’'b one can conclude ¢ # €. Since w’ is a witness, condition (iii) says
that ¢ = ¢’bujcv for some ¢’ and some numbers «; and v such that ya = u;a
and v' = vz. Then y = u; and w’ = ¢'bycvbyacvrb. Evidently, ¢'bycvb, which
is the same as ¢”b, satisfies all conditions (i)—(iv) in the definition of a witness
for z x y. =

Having Lemma 5, we can define the formula M(x,y, ), saying that z is a
product of x and y, as follows:

M(z,y, z) = Fw(PWitn(z,y,w) & Vw' (PWitn(z,y,w') — v’ =w) &
& czbw).

Theorem The theory Q~ is interpretable in TC. Thus also Robinson arith-
metic Q is interpretable in TC, and TC is essentially undecidable.

Proof It remains to consider axioms about multiplication, i.e. M, G6, and G7.
If M(z,y, z1) and M(z,y, 22), then there is a w that is the unique witness for x xy
and such that bycz;b 0 w and byczeb 1 w. Then the usual argument, i.e.
Lemma 1(c) and Lemma 4(a), shows that z; = z3. So validity of axiom M
in our interpretation follows. Validity of axiom G6 follows from Lemma 5
(a) and (b). Consider axiom G7. Let M(x,y,z) and A(z,z,u). We have to
verify M(z,S(y), ). According to our definitions, A(z,z,u) says zx = u, while
S(y) is ya. We know from M(z, y, z) that there exists a unique witness for z X y;
it must have the form gbyczb. Then Lemma 5(c) says that gbyczbyaczzb is
a witness for x x ya. To verify that it is the only witness, let w’ be a witness
for x x ya. By Lemma 5(d), w’ = ¢'bycvbyacvrb where v is a number and
q'bycuvb is a witness for x x y. However, we know that gbyczb is the only wit-
ness for x X y. Thus ¢'bycvb = gbyczb. Then ¢'bycv = gbycz, and Lemma 4(a)
says v = z and ¢’ = ¢q. Thus indeed, w’ = gbyczbyaczzb. =

Petr Héjek considered a somewhat stronger variant Q" of Q~, having the
same language and similar axioms, but with equivalences instead of implications
in axioms G5 and G7, see [H4j07]. So in Q", if S(y) can be added to = from the
right then also y can be added to = from the right, and if z can be multiplied
by S(y) from the right then x can also be multiplied by y, and their product
can be added to z from the left. One can verify that Hajek’s axioms are valid
in our interpretation as well. Albert Visser noticed that there exists a simple

interpretation of Q in Q", one that does not use the Solovay’s technique of
shortening of cuts: it is basically sufficient to introduce an “ideal” individual co
and stipulate that oo is the new sum or product of x and y whenever the old sum
or product of x and y do not exist. So since the Solovay’s technique is an essential
ingredient of [SveO?], “Visser’s detour” via QM yields a more straightforward
interpretation of Q in TC than the detour via Grzegorczyk’s Q.

Note that TC is easily interpretable in the bounded arithmetic I1Ag. Since
1A, is known to be interpretable in Q, all theories TC, Q~, Q", Q, and 1A are
mutually interpretable.
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