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CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the
intuitionistic propositional logic, are decidable. None of them has
an efficient decision procedure. However, CPL is coNP-complete,
while

Theorem (Statman, 1979) IPL is PSPACE-complete.

Where: coNP is the class of problems A such that non-membership
to A can be efficiently witnessed, PSPACE are problems solvable in
polynomial space. Recall that coNP ⊆ PSPACE and
read “complete” as “no better classification is possible”.

Question
Where is the border between the somewhat simpler problems that
are in coNP and the more difficult problems that are
PSPACE-complete?
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A PSPACE-completeness proof

Take a sequence { Dn ; n ∈ N }, where

D0 = ⊥, Dn+1 = (pn → Dn) ∨ (¬pn → Dn),

and consider a Kripke counter-example to Dn+1:

6
pn→Dn, 6
¬pn→Dn

q

It must contain two disjoint copies of a counter-example to Dn. So
the size of the smallest counter-example to Dn grows exponentially
with n.

Better: Take Dn+1 = (Dn → qn)→ (pn → qn)∨ (¬pn → qn). Then
it is still the case, but the size of Dn itself grows only polynomially.
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Possible restrictions

What happens to PSPACE-completeness, if

• the number of atoms is restricted, or

• the use of some logical connectives is forbidden, or

• IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)

IPL remains PSPACE-complete even if the number of propositional
atoms is restricted to two.

Rieger-Nishimura:

With only one atom, IPL is efficiently decidable.

Theorem
IPL remains PSPACE-complete even if → (implication) is the only
logical connective.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 5/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Possible restrictions

What happens to PSPACE-completeness, if

• the number of atoms is restricted, or

• the use of some logical connectives is forbidden, or

• IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)

IPL remains PSPACE-complete even if the number of propositional
atoms is restricted to two.

Rieger-Nishimura:

With only one atom, IPL is efficiently decidable.

Theorem
IPL remains PSPACE-complete even if → (implication) is the only
logical connective.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 5/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Possible restrictions

What happens to PSPACE-completeness, if

• the number of atoms is restricted, or

• the use of some logical connectives is forbidden, or

• IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)

IPL remains PSPACE-complete even if the number of propositional
atoms is restricted to two.

Rieger-Nishimura:

With only one atom, IPL is efficiently decidable.

Theorem
IPL remains PSPACE-complete even if → (implication) is the only
logical connective.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 5/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Possible restrictions

What happens to PSPACE-completeness, if

• the number of atoms is restricted, or

• the use of some logical connectives is forbidden, or

• IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)

IPL remains PSPACE-complete even if the number of propositional
atoms is restricted to two.

Rieger-Nishimura:

With only one atom, IPL is efficiently decidable.

Theorem
IPL remains PSPACE-complete even if → (implication) is the only
logical connective.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 5/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Possible restrictions

What happens to PSPACE-completeness, if

• the number of atoms is restricted, or

• the use of some logical connectives is forbidden, or

• IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)

IPL remains PSPACE-complete even if the number of propositional
atoms is restricted to two.

Rieger-Nishimura:

With only one atom, IPL is efficiently decidable.

Theorem
IPL remains PSPACE-complete even if → (implication) is the only
logical connective.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 5/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Possible restrictions

What happens to PSPACE-completeness, if

• the number of atoms is restricted, or

• the use of some logical connectives is forbidden, or

• IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)

IPL remains PSPACE-complete even if the number of propositional
atoms is restricted to two.

Rieger-Nishimura:

With only one atom, IPL is efficiently decidable.

Theorem
IPL remains PSPACE-complete even if → (implication) is the only
logical connective.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 5/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Implicational fragments with finite number of atoms

q

(q → p) → q

(q → p) → p p → q

((p → q) → p) → p

������

������

PPPPPP

PPPPPP

Example argument

If q then p → q. So if (p → q) → p then q → p.
Thus if (q → p) → p then ((p → q) → p) → p.

Theorem (Urquhart, 1974)

For each n, the fragment of IPL built up using n atoms only and
implication → as the only connective is finite. It is thus efficiently
decidable.
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Some intermediate logics

Gödel-Dummett logic G (LG, BG) IPL plus (A → B) ∨ (B → A).

Testability logic KC

IPL plus ¬A ∨ ¬¬A. This logic is also known as logic of weak
excluded middle, or Jankov’s logic, or De Morgan logic. It is
weaker than G: If ¬¬A →¬A, then ¬A. If ¬A →¬¬A, then ¬¬A.
It is complete w.r.t. Kripke models having a greatest element:

q

q

q

q
�

��>

�
��>

Z
ZZ}

Z
ZZ}

p q

p,q

Theorem
KC is conservative over IPL w.r.t. purely implicational formulas.
Thus it is PSPACE-complete.
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Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A

q
S

S
S

SS

�
�

�
��

6
A

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Evaluate all atoms positively in the new node.

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Evaluate all atoms positively in the new node. Verify that no
implicational formula changes truth values in the old nodes.

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Evaluate all atoms positively in the new node. Verify that no
implicational formula changes truth values in the old nodes.

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Evaluate all atoms positively in the new node. Verify that no
implicational formula changes truth values in the old nodes.

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Evaluate all atoms positively in the new node. Verify that no
implicational formula changes truth values in the old nodes.

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

Proof, final remarks

Proof
Take an intuitionistic counter-model to a purely implicational
formula A, and add a new node accessible from everywhere:

q
S

S
S

SS

�
�

�
��

6
A

q

�
�

�3
Q

Q
Qk




�

Evaluate all atoms positively in the new node. Verify that no
implicational formula changes truth values in the old nodes.

Remarks

• Other popular intermediate logic (Kreisel-Putnam, Scott,
Smetanich) are either weaker than KC, or stronger than G.

• KC is the weakest reflexive logic.

Vitek Svejdar, Charles U., Prague Decision Problems of Some Intermediate Logics and Their Fragments 8/9



Logics and algorithmical complexity Restricting connectives and/or atoms Intermediate logics

References

L. S. Rieger. On lattice theory of Brouwerian propositional
logic. Acta Facultatis Rerum Naturalium Univ. Carolinae,
189:1–40, 1949.

M. N. Rybakov. Complexity of intuitionistic and Visser’s basic
and formal logics in finitely many variables. In G. Governatori,
I. Hodkinson, and Y. Venema, editors, Advances in Modal
Logic 6 (AiML’06), pages 394–411, Noosa, Australia,
September 2006. King’s College Publications, 2006.

R. Statman. Intuitionistic propositional logic is
polynomial-space complete. Theoretical Computer Science,
9:67–72, 1979.
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