Decision Problems of Some Intermediate Logics and Their Fragments

Vítězslav Švejdar

Dept. of Logic, College of Arts and Philosophy, Charles University, http://www.cuni.cz/~svejdar/

Logica 09, Hejnice, June 2009

Outline

Introduction: propositional logics and algorithmical complexity

Restricting connectives and/or atoms in intuitionistic logic

Complexity of some intermediate logics

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic are decidable. None of them has an efficient decision procedure. However, CPL is coNP-complete, while

Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNP is the class of problems A such that non-membership to A can be efficiently witnessed, PSPACE are problems solvable in polynomial space. Recall that coNP \subseteq PSPACE and read "complete" as "no better classification is possible"

Question
Where is the border between the somewhat simpler problems that are in coNP and the more difficult problems that are
PSPACE-complete?

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic, are decidable. None of them has an efficient decision procedure. However, CPL is coNP-complete,
while
Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNP is the class of problems A such that non-membership
to A can be efficiently witnessed, PSPACE are problems solvable in
polynomial space. Recall that coNP \subseteq PSPACE and
read "complete" as "no better classification is possible".
Question
Where is the border between the somewhat simpler problems that
are in coNP and the more difficult problems that are
PSPACE-complete?

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic, are decidable. None of them has an efficient decision procedure. while

Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNIP is the class of problems A such that non-membership to A can be efficiently witnessed, PSPACE are problems solvable in polynomial space. Recall that coNP \subseteq PSPACE and read "complete" as "no better classification is possible"

Question
Where is the border between the somewhat simpler problems that are in coNP and the more difficult problems that are
PSPACE-complete?

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic, are decidable. None of them has an efficient decision procedure. However, CPL is coNP-complete, while

Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNP is the class of problems A such that non-membership to A can be efficiently witnessed, PSPACE are problems solvable in polynomial space. Recall that coNP \subseteq PSPACE and read "complete" as "no better classification is possible'

Question
Where is the border between the somewhat simpler problems that are in coNP and the more difficult problems that are
PSPACE-complete?

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic, are decidable. None of them has an efficient decision procedure. However, CPL is coNP-complete, while

Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNP is the class of problems A such that non-membership to A can be efficiently witnessed, PSPACE are problems solvable in polynomial space.
read
Question
Where is the boreder bemeen the somenhat simpler problemss that are in coNP and the more difficult problems that are PSPACE-complete?

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic, are decidable. None of them has an efficient decision procedure. However, CPL is coNP-complete, while

Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNP is the class of problems A such that non-membership to A can be efficiently witnessed, PSPACE are problems solvable in polynomial space. Recall that coNP \subseteq PSPACE and read "complete" as "no better classification is possible".

Where is the border between the somewhat simpler problems that are in coNP and the more difficult problems that are PSPACE-complete?

CPL, IPL, and computational complexity

Both CPL, the classical propositional logic, and IPL, the intuitionistic propositional logic, are decidable. None of them has an efficient decision procedure. However, CPL is coNP-complete, while

Theorem (Statman, 1979) IPL is PSPACE-complete.
Where: coNP is the class of problems A such that non-membership to A can be efficiently witnessed, PSPACE are problems solvable in polynomial space. Recall that coNP \subseteq PSPACE and read "complete" as "no better classification is possible".

Question

Where is the border between the somewhat simpler problems that are in coNP and the more difficult problems that are PSPACE-complete?

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right),
$$ and consider a Kripke counter-example to D_{n+1} :

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n

Better: Take $D_{n+1}=\left(D_{n} \rightarrow q_{n}\right) \rightarrow\left(p_{n} \rightarrow q_{n}\right) \vee\left(\neg p_{n} \rightarrow q_{n}\right)$. Then it is still the case, but the size of D_{n} itself grows only polynomially.

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right),
$$ and consider a Kripke counter-example to D_{n+1} :

$$
\Vdash p_{n} \rightarrow D_{n}, \nVdash \neg p_{n} \rightarrow D_{n}
$$

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n

Better: Take $D_{n+1}=\left(D_{n} \rightarrow q_{n}\right) \rightarrow\left(p_{n} \rightarrow q_{n}\right) \vee\left(\neg p_{n} \rightarrow q_{n}\right)$. Then it is still the case, but the size of D_{n} itself grows only polynomially.

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right),
$$

and consider a Kripke counter-example to D_{n+1} :

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n

Better: Take $D_{n+1}=\left(D_{n} \rightarrow q_{n}\right) \rightarrow\left(p_{n} \rightarrow q_{n}\right) \vee\left(\neg p_{n} \rightarrow q_{n}\right)$. Then it is still the case, but the size of D_{n} itself grows only polynomially.

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right),
$$

and consider a Kripke counter-example to D_{n+1} :

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n

Better: Take $D_{n+1}=\left(D_{n} \rightarrow q_{n}\right) \rightarrow\left(p_{n} \rightarrow q_{n}\right) \vee\left(\neg p_{n} \rightarrow q_{n}\right)$. Then it is still the case, but the size of D_{n} itself grows only polynomially.

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right),
$$

and consider a Kripke counter-example to D_{n+1} :

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n

Better: Take $D_{n+1}=\left(D_{n} \rightarrow q_{n}\right) \rightarrow\left(p_{n} \rightarrow q_{n}\right) \vee\left(\neg p_{n} \rightarrow q_{n}\right)$. Then it is still the case, but the size of D_{n} itself grows only polynomially.

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right)
$$

and consider a Kripke counter-example to D_{n+1} :

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n.
it is still the case, but the size of D_{n} itself grows only polynomially.

A PSPACE-completeness proof

Take a sequence $\left\{D_{n} ; n \in \mathrm{~N}\right\}$, where

$$
D_{0}=\perp, \quad D_{n+1}=\left(p_{n} \rightarrow D_{n}\right) \vee\left(\neg p_{n} \rightarrow D_{n}\right)
$$

and consider a Kripke counter-example to D_{n+1} :

It must contain two disjoint copies of a counter-example to D_{n}. So the size of the smallest counter-example to D_{n} grows exponentially with n.

Better: Take $D_{n+1}=\left(D_{n} \rightarrow q_{n}\right) \rightarrow\left(p_{n} \rightarrow q_{n}\right) \vee\left(\neg p_{n} \rightarrow q_{n}\right)$. Then it is still the case, but the size of D_{n} itself grows only polynomially.

Possible restrictions

What happens to PSPACE-completeness, if

- the number of atoms is restricted, or
- the use of some logical connectives is forbidden, or
- IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)
IPL remains PSPACE-complete even if the number of propositional atoms is restricted to two.

Rieger-Nishimura:
With only one atom, IPL is efficiently decidable.
Theorem
IPL remains PSPACE-complete even if \rightarrow (implication) is the only
logical connective.

Possible restrictions

What happens to PSPACE-completeness, if

- the number of atoms is restricted, or
- the use of some logical connectives is forbidden, or
- IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)
IPL remains PSPACE-complete even if the number of propositional atoms is restricted to two.

Rieger-Nishimura:
With only one atom, IPL is efficiently decidable.
Theorem
IPL remains PSPACE-complete even if \rightarrow (implication) is the only
logical connective.

Possible restrictions

What happens to PSPACE-completeness, if

- the number of atoms is restricted, or
- the use of some logical connectives is forbidden, or
- IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)
IPL remains PSPACE-complete even if the number of propositional atoms is restricted to two.

Rieger-Nishimura:
With only one atom, IPL is efficiently decidable.
Theorem
IPL remains PSPACE-complete even if \rightarrow (implication) is the only
logical connective.

Possible restrictions

What happens to PSPACE-completeness, if

- the number of atoms is restricted, or
- the use of some logical connectives is forbidden, or
- IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)
IPL remains PSPACE-complete even if the number of propositional atoms is restricted to two.

Rieger-Nishimura:
With only one atom, IPL is efficiently decidable.
Theorem
logical connective.

Possible restrictions

What happens to PSPACE-completeness, if

- the number of atoms is restricted, or
- the use of some logical connectives is forbidden, or
- IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)
IPL remains PSPACE-complete even if the number of propositional atoms is restricted to two.

Rieger-Nishimura:
With only one atom, IPL is efficiently decidable.
logical connective.

Possible restrictions

What happens to PSPACE-completeness, if

- the number of atoms is restricted, or
- the use of some logical connectives is forbidden, or
- IPL is replaced by some stronger (intermediate) logic?

Theorem (Rybakov, 2006)
IPL remains PSPACE-complete even if the number of propositional atoms is restricted to two.

Rieger-Nishimura:
With only one atom, IPL is efficiently decidable.
Theorem
IPL remains PSPACE-complete even if \rightarrow (implication) is the only logical connective.

Implicational fragments with finite number of atoms

Example argument
If q then $p \rightarrow q$. So if $(p \rightarrow q) \rightarrow p$ then $q \rightarrow p$.
Thus if $(q \rightarrow p) \rightarrow p$ then $((p \rightarrow q) \rightarrow p) \rightarrow p$.
\square
For each n, the fragment of IPL built up using n atoms only and implication \rightarrow as the only connective is finite. It is thus efficiently decidable.

Implicational fragments with finite number of atoms

Example argument
If q then $p \rightarrow q$. So if $(p \rightarrow q) \rightarrow p$ then $q \rightarrow p$.
Thus if $(q \rightarrow p) \rightarrow p$ then $((p \rightarrow q) \rightarrow p) \rightarrow p$.
Theorem (Urquhart, 1974)
For each n, the fragment of IPL built up using n atoms only and implication \rightarrow as the only connective is finite. It is thus efficiently decidable.

Some intermediate logics

Gödel-Dummett logic $G(\mathrm{LG}, \mathrm{BG})$ IPL plus $(A \rightarrow B) \vee(B \rightarrow A)$.
\square
IPL plus $\neg A \vee \neg \neg A$. This logic is also known as logic of weak excluded middle, or Jankov's logic, or De Morgan logic. It is weaker than G: If $\neg \neg A \rightarrow \neg A$, then $\neg A$. If $\neg A \rightarrow \neg \neg A$, then $\neg \neg A$. It is complete w.r.t. Kripke models having a greatest element:

[^0]
Some intermediate logics

Gödel-Dummett logic $G(\mathrm{LG}, \mathrm{BG})$ IPL plus $(A \rightarrow B) \vee(B \rightarrow A)$.
Testability logic KC
IPL plus $\neg A \vee \neg \neg A$. This logic is also known as logic of weak excluded middle, or Jankov's logic, or De Morgan logic. It is weaker than G: If $\neg \neg A \rightarrow \neg A$, then $\neg A$. If $\neg A \rightarrow \neg \neg A$, then $\neg \neg A$. It is complete w.r.t. Kripke models having a greatest element:

Some intermediate logics

Gödel-Dummett logic $G(\mathrm{LG}, \mathrm{BG})$ IPL plus $(A \rightarrow B) \vee(B \rightarrow A)$.
Testability logic KC
IPL plus $\neg A \vee \neg \neg A$. This logic is also known as logic of weak excluded middle, or Jankov's logic, or De Morgan logic. It is weaker than G: If $\neg \neg A \rightarrow \neg A$, then $\neg A$. If $\neg A \rightarrow \neg \neg A$, then $\neg \neg A$. It is complete w.r.t. Kripke models having a greatest element:

Theorem
KC is conservative over IPL w.r.t. purely implicational formulas. Thus it is PSPACE-complete.

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Evaluate all atoms positively in the new node.

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Evaluate all atoms positively in the new node. Verify that no implicational formula changes truth values in the old nodes.

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Evaluate all atoms positively in the new node. Verify that no implicational formula changes truth values in the old nodes.

Remarks

- Other popular intermediate logic (Kreisel-Putnam, Scott, Smetanich) are either weaker than KC, or stronger than G.
- KC is the weakest reflexive logic.

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Evaluate all atoms positively in the new node. Verify that no implicational formula changes truth values in the old nodes.

Remarks

- Other popular intermediate logic (Kreisel-Putnam, Scott, Smetanich) are either weaker than KC, or stronger than G.
- KC is the weakest reflexive logic.

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Evaluate all atoms positively in the new node. Verify that no implicational formula changes truth values in the old nodes.

Remarks

- Other popular intermediate logic (Kreisel-Putnam, Scott, Smetanich) are either weaker than KC, or stronger than G.
- KC is the weakest reflexive logic.

Proof, final remarks

Proof

Take an intuitionistic counter-model to a purely implicational formula A, and add a new node accessible from everywhere:

Evaluate all atoms positively in the new node. Verify that no implicational formula changes truth values in the old nodes.

Remarks

- Other popular intermediate logic (Kreisel-Putnam, Scott, Smetanich) are either weaker than KC, or stronger than G.
- KC is the weakest reflexive logic.

References

目
L．S．Rieger．On lattice theory of Brouwerian propositional logic．Acta Facultatis Rerum Naturalium Univ．Carolinae， 189：1－40， 1949.
（R M．N．Rybakov．Complexity of intuitionistic and Visser＇s basic and formal logics in finitely many variables．In G．Governatori， I．Hodkinson，and Y．Venema，editors，Advances in Modal Logic 6 （AiML＇06），pages 394－411，Noosa，Australia， September 2006．King＇s College Publications， 2006.

图 R．Statman．Intuitionistic propositional logic is polynomial－space complete．Theoretical Computer Science， 9：67－72， 1979.
固 V．Švejdar．On the polynomial－space completeness of intuitionistic propositional logic．Archive for Math．Logic， 42（7）：711－716， 2003.

[^0]: Theorem
 KC is conservative over IPL w.r.t. purely implicational formulas. Thus it is PSPACE-complete.

