Relatives of Robinson Arithmetic

Vítězslav Švejdar

Dept. of Logic, College of Arts and Philosophy, Charles University, http://www.cuni.cz/~svejdar/

Logica 08, Hejnice, June 2008

Outline

Introduction: the importance and properties of Robinson arithmetic

TC, the theory of concatenation

The theory F, its mutual interpretability with TC

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

- It is quite weak, e.g. $\mathrm{Q} \nvdash \forall x \forall y(x+y=y+x)$.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I \triangle_{0}$
- Gödel 2nd theorem is also true for it
(after its meaning for such a weak theory is clarified).

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

- It is quite weak, e.g. $\mathrm{Q} \nvdash \forall x \forall y(x+y=y+x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $\mathrm{I} \Delta_{0}$.
- Gödel 2nd theorem is also true for it
(after its meaning for such a weak theory is clarified)

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

- It is quite weak, e.g. $\mathrm{Q} \nvdash \forall x \forall y(x+y=y+x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I \triangle_{0}$.
- Gödel 2nd theorem is also true for it
(after its meaning for such a weak theory is clarified)

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

- It is quite weak, e.g. $\mathrm{Q} \nvdash \forall x \forall y(x+y=y+x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $\mathrm{I} \Delta_{0}$.
- Gödel 2nd theorem is also true for it
(after its meaning for such a weak theory is clarified)

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

- It is quite weak, e.g. $\mathrm{Q} \nvdash \forall x \forall y(x+y=y+x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $\mathrm{I} \Delta_{0}$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic theory with the language $\{0, S,+, \cdot\}$ and with seven simple axioms like $\forall x \forall y(x+\mathrm{S}(y)=\mathrm{S}(x+y))$. Main properties:

- It is quite weak, e.g. $\mathrm{Q} \nvdash \forall x \forall y(x+y=y+x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $\mathrm{I} \Delta_{0}$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

TC, the theory of concatenation

Constants ε, a, b, binary function symbol \frown (usually omitted), and axioms:
TC1: $\forall x(x \varepsilon=\varepsilon x=x)$,
TC2: $\forall x \forall y \forall z((x y) z=x(y z))$,
TC3: $\forall x \forall y \forall u \forall v(x y=u v \rightarrow$
$\rightarrow \exists w((x w=u \& w v=y) \vee(u w=x \& w y=v)))$,
TC4: $\mathrm{a} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC5: $\mathrm{b} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{b} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC6: $\mathrm{a} \neq \mathrm{b}$.
Example proof of $\forall x(x a \neq \varepsilon)$:

TC, the theory of concatenation

Constants $\varepsilon, \mathrm{a}, \mathrm{b}$, binary function symbol \frown (usually omitted), and axioms:
TC1: $\forall x(x \varepsilon=\varepsilon x=x)$,

TC2: $\forall x \forall y \forall z((x y) z=x(y z))$,
TC3: $\forall x \forall y \forall u \forall v(x y=u v \rightarrow$

$\rightarrow \exists w((x w=u \& w v=y) \vee(u w=x \& w y=v)))$,
TC4: $\mathrm{a} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC5: $\mathrm{b} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{b} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC6: $\mathrm{a} \neq \mathrm{b}$.

TC, the theory of concatenation

Constants ε, a, b, binary function symbol \frown (usually omitted), and axioms:
TC1: $\forall x(x \varepsilon=\varepsilon x=x)$,
TC2: $\forall x \forall y \forall z((x y) z=x(y z))$,
TC3: $\forall x \forall y \forall u \forall v(x y=u v \rightarrow$

$\rightarrow \exists w((x w=u \& w v=y) \vee(u w=x \& w y=v)))$,
TC4: $\mathrm{a} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC5: $\mathrm{b} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{b} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC6: $\mathrm{a} \neq \mathrm{b}$.

TC, the theory of concatenation

Constants ε, a, b, binary function symbol \frown (usually omitted), and axioms:
TC1: $\forall x(x \varepsilon=\varepsilon x=x)$,
TC2: $\forall x \forall y \forall z((x y) z=x(y z))$,
TC3: $\forall x \forall y \forall u \forall v(x y=u v \rightarrow$

$\rightarrow \exists w((x w=u \& w v=y) \vee(u w=x \& w y=v)))$,
TC4: $\mathrm{a} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC5: $\mathrm{b} \neq \varepsilon \& \forall x \forall y(x y=\mathrm{b} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
TC6: $\mathrm{a} \neq \mathrm{b}$.
Example proof of $\forall x(x a \neq \varepsilon)$:
For, if $x \mathrm{a}=\varepsilon$, then $\mathrm{bxa}=\mathrm{b}$. By TC5, $\mathrm{b} x=\varepsilon$ or $\mathrm{a}=\varepsilon$.
So $\mathrm{b} x=\varepsilon$, a contradiction with TC6.

Some properties of TC

Further examples

$\mathrm{TC} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
TC $\forall \forall z(a z \neq z)$, and so TC $\vdash \forall x \forall y \forall z(x z=y z \rightarrow x=y)$, $\mathrm{TC} \vdash \forall x \forall y(x \mathrm{a}=y \mathrm{a} \rightarrow x=y)$.

Substrings and (no good notion of) occurrences
If $u x v=y$ for some u and v then one can say that x is
a substring of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$.

Some history
First ideas can be traced back to Tarski and Quine [Qui46] Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk \& Zdanowski proved essential undecidability of TC in [GZ08].

Some properties of TC

Further examples
$\mathrm{TC} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
TC $\vdash \forall z(a z \neq z)$, and so TC $\vdash \forall x \forall y \forall z(x z=y z \rightarrow x=y)$,
$\mathrm{TC} \vdash \forall x \forall y(x \mathrm{a}=y \mathrm{a} \rightarrow x=y)$.
Substrings and (no good notion of) occurrences
If $u x v=y$ for some u and v then one can say that x is
a substring of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$

Some history
First ideas can be traced back to Tarski and Quine [Qui46] Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk \& Zdanowski proved essential undecidability of TC in [GZ08].

Some properties of TC

Further examples

$$
\begin{aligned}
& \mathrm{TC} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon), \\
& \mathrm{TC} \vdash \forall z(\mathrm{az} \neq z) \text {, and so TC } \nvdash \forall x \forall y \forall z(x z=y z \rightarrow x=y),
\end{aligned}
$$

 $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$

Some history
First ideas can be traced back to Tarski and Quine [Qui46] Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk \& Zdanowski proved essential undecidability of TC in [GZ08].

Some properties of TC

Further examples

$$
\begin{aligned}
& \mathrm{TC} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon) \text {, } \\
& \text { TC } \vdash \forall \forall z(\mathrm{az} \neq z) \text {, and so TC } \forall \forall x \forall y \forall z(x z=y z \rightarrow x=y) \text {, } \\
& \text { TC } \vdash \forall x \forall y(x \mathrm{a}=y \mathrm{a} \rightarrow x=y) .
\end{aligned}
$$

Substrings and (no good notion of) occurrences
If $u \times v=y$ for some u and v then one can say that x is
 $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$

Some history
First ideas can be traced back to Tarski and Quine [Qui46] Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk \& Zdanowski proved essential undecidability of TC in [GZ08].

Some properties of TC

Further examples
TC $\vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
TC $\forall \forall z(\mathrm{az} \neq z)$, and so TC $\forall \forall x \forall y \forall z(x z=y z \rightarrow x=y)$,
$\mathrm{TC} \vdash \forall x \forall y(x \mathrm{a}=y \mathrm{a} \rightarrow x=y)$.
Substrings and (no good notion of) occurrences
If $u x v=y$ for some u and v then one can say that x is a substring of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$.
in y. However, u is not uniquely determined.

First ideas can be traced back to Tarski and Quine [Qui46] Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk \& Zdanowski proved essential undecidability of TC in [GZ08]

Some properties of TC

Further examples
$\mathrm{TC} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
$\mathrm{TC} \forall \forall \forall z(\mathrm{az} \neq z)$, and so TC $\forall \forall x \forall y \forall z(x z=y z \rightarrow x=y)$,
$\mathrm{TC} \vdash \forall x \forall y(x \mathrm{a}=y \mathrm{a} \rightarrow x=y)$.
Substrings and (no good notion of) occurrences
If $u x v=y$ for some u and v then one can say that x is a substring of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$. In the same situation where $u x v=y$, one might be tempted to say that u is an occurrence of x in y. However, u is not uniquely determined.

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorcizyk \& Zdanowski proved essential undecidability of TC in [GZ08].

Some properties of TC

Further examples
$\mathrm{TC} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
$\mathrm{TC} \nvdash \forall z(\mathrm{az} \neq z)$, and so TC $\forall \forall x \forall y \forall z(x z=y z \rightarrow x=y)$,
$\mathrm{TC} \vdash \forall x \forall y(x \mathrm{a}=y \mathrm{a} \rightarrow x=y)$.
Substrings and (no good notion of) occurrences
If $u x v=y$ for some u and v then one can say that x is a substring of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$. In the same situation where $u x v=y$, one might be tempted to say that u is an occurrence of x in y. However, u is not uniquely determined.

Some history
First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk \& Zdanowski proved essential undecidability of TC in [GZO8].

Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007) $T C$ interprets Q; in symbols, $T C \triangleright Q$. So Q and TC are mutually interpretable.

Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007)
$T C$ interprets Q; in symbols, $T C \triangleright$.
So Q and TC are mutually interpretable.
Proof
Show TC $\triangleright \mathrm{Q}^{-}$, where Q^{-}is a weaker variant of Q in which addition + and multiplication • are possibly non-total.

Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007)
$T C$ interprets Q; in symbols, $T C \triangleright Q$.
So Q and TC are mutually interpretable.
Proof
Show TC $\triangleright \mathrm{Q}^{-}$, where Q^{-}is a weaker variant of Q in which addition + and multiplication • are possibly non-total. Then use $Q^{-} \triangleright$ Q, and transitivity of \triangleright.

Remark
$Q^{-} \triangleright \mathrm{Q}$ is proved in [Šve07b] using the (never published!) Solovay method of shortening of cuts, see [Sol76].

Axioms and properties of the theory F

F1: $\quad \forall x(x \varepsilon=\varepsilon x=x)$,
F2: $\quad \forall x \forall y \forall z((x y) z=x(y z))$,
F3: $\quad \forall x \forall y \forall z(y x=z x \vee x y=x z \rightarrow y=z)$,
F4: $\forall x \forall y(x \mathrm{a} \neq y \mathrm{~b})$,
F5: $\quad \forall x(x \neq \varepsilon \rightarrow \exists u(x=u \mathrm{a} \vee x=u \mathrm{~b}))$.

Axioms and properties of the theory F

F1: $\forall x(x \varepsilon=\varepsilon x=x)$,
F2: $\quad \forall x \forall y \forall z((x y) z=x(y z))$,
F3: $\quad \forall x \forall y \forall z(y x=z x \vee x y=x z \rightarrow y=z)$,
F4: $\quad \forall x \forall y(x a \neq y b)$,
F5: $\quad \forall x(x \neq \varepsilon \rightarrow \exists u(x=u \mathrm{a} \vee x=u \mathrm{~b}))$.
Some example sentences

$$
\begin{aligned}
& \mathrm{F} \vdash \forall x(x a \neq \varepsilon), \quad \mathrm{F} \vdash \mathrm{a} \neq \varepsilon, \\
& \mathrm{F} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon), \\
& \mathrm{F} \vdash \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon),
\end{aligned}
$$

Axioms and properties of the theory F

F1: $\quad \forall x(x \varepsilon=\varepsilon x=x)$,
F2: $\quad \forall x \forall y \forall z((x y) z=x(y z))$,
F3: $\quad \forall x \forall y \forall z(y x=z x \vee x y=x z \rightarrow y=z)$,
F4: $\forall x \forall y(x \mathrm{a} \neq y \mathrm{~b})$,
F5: $\forall x(x \neq \varepsilon \rightarrow \exists u(x=u \mathrm{a} \vee x=u \mathrm{~b}))$.
Some example sentences
$\mathrm{F} \vdash \forall x(x \mathrm{a} \neq \varepsilon), \quad \mathrm{F} \vdash \mathrm{a} \neq \varepsilon$,
$\mathrm{F} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
$\mathrm{F} \vdash \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
$\mathrm{F} \forall \forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$,
so a letter can be created ex nihilo, as Albert Visser puts it.

Axioms and properties of the theory F

F1: $\quad \forall x(x \varepsilon=\varepsilon x=x)$,
F2: $\quad \forall x \forall y \forall z((x y) z=x(y z))$,
F3: $\quad \forall x \forall y \forall z(y x=z x \vee x y=x z \rightarrow y=z)$,
F4: $\forall x \forall y(x a \neq y b)$,
F5: $\quad \forall x(x \neq \varepsilon \rightarrow \exists u(x=u \mathrm{a} \vee x=u \mathrm{~b}))$.
Some example sentences
$\mathrm{F} \vdash \forall x(x \mathrm{a} \neq \varepsilon), \quad \mathrm{F} \vdash \mathrm{a} \neq \varepsilon$,
$\mathrm{F} \vdash \forall x \forall y(x y=\varepsilon \rightarrow x=\varepsilon \& y=\varepsilon)$,
$\mathrm{F} \vdash \forall x \forall y(x y=\mathrm{a} \rightarrow x=\varepsilon \vee y=\varepsilon)$,
$\mathrm{F} \forall \forall x \forall y(\mathrm{a} \sqsubseteq x y \rightarrow \mathrm{a} \sqsubseteq x \vee \mathrm{a} \sqsubseteq y)$,
so a letter can be created ex nihilo, as Albert Visser puts it.
Historical problem
Szmielew and Tarski claim in [TMR53] that F interprets Q, but give no proof.

Mutual interpretability of F and TC

Theorem 2 (Ganea)
F interprets $T C$, i.e. $F \triangleright T C$. So from $T C \triangleright Q$ we have $F \triangleright Q$.
Proof (a simplification of Ganea's proof)
In F (or in TC), write $x \square y$ for $\exists v(v x=y$), i.e. for " x is an end segment of y ". Then define tame strings as follows Tame $(x) \equiv \forall v \forall z(z \square v x \rightarrow z \square x \vee x \square z)$
One can verify that tame strings include ε, a, and b, are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3
TC interprets F
Droof
Now in TC, work with radical strings, where

$$
\operatorname{Rad}(x) \equiv \forall y \forall z(y x=z x \rightarrow y=z) .
$$

Radical strings include ε, a, and b, etc.

Mutual interpretability of F and TC

Theorem 2 (Ganea)
F interprets $T C$, i.e. $F \triangleright T C$. So from $T C \triangleright Q$ we have $F \triangleright Q$.
Proof (a simplification of Ganea's proof)
In F (or in TC), write $x \square y$ for $\exists v(v x=y$), i.e. for " x is an end segment of $y^{\prime \prime}$. Then define tame strings as follows

$$
\operatorname{Tame}(x) \equiv \forall v \forall z(z \square v x \rightarrow z \square x \vee x \square z) .
$$

One can verify that tame strings include ε, a , and b , are closed under concatenation, and satisfy the editor axiom TC3.

Now in TC, work with radical strings, where
\square

Mutual interpretability of F and TC

Theorem 2 (Ganea)
F interprets $T C$, i.e. $F \triangleright T C$. So from $T C \triangleright Q$ we have $F \triangleright Q$.
Proof (a simplification of Ganea's proof)
In F (or in TC), write $x \square y$ for $\exists v(v x=y$), i.e. for " x is an end segment of $y^{\prime \prime}$. Then define tame strings as follows

$$
\operatorname{Tame}(x) \equiv \forall v \forall z(z \square v x \rightarrow z \square x \vee x \square z) .
$$

One can verify that tame strings include ε, a , and b , are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3
TC interprets F .

Now in TC, work with radical strings, where $\operatorname{Rad}(x) \equiv \forall y \forall z(y x=z x \rightarrow y=z)$,

Mutual interpretability of F and TC

Theorem 2 (Ganea)
F interprets $T C$, i.e. $F \triangleright T C$. So from $T C \triangleright Q$ we have $F \triangleright Q$.
Proof (a simplification of Ganea's proof)
In F (or in TC), write $x \square y$ for $\exists v(v x=y$), i.e. for " x is an end segment of $y^{\prime \prime}$. Then define tame strings as follows

$$
\operatorname{Tame}(x) \equiv \forall v \forall z(z \square v x \rightarrow z \square x \vee x \square z) .
$$

One can verify that tame strings include ε, a , and b , are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3
TC interprets F .

Proof

Now in TC, work with radical strings, where

$$
\operatorname{Rad}(x) \equiv \forall y \forall z(y x=z x \rightarrow y=z) .
$$

Radical strings include ε, a , and b , etc.

References，part 1

圁 M．Ganea．Arithmetic on semigroups．A preprint，submitted for publication， 2007.

固 A．Grzegorczyk．Undecidability without arithmetization． Studia Logica，79（2）：163－230， 2005.
© A．Grzegorczyk and K．Zdanowski．Undecidability and concatenation．In A．Ehrenfeucht，V．W．Marek，and M．Srebrny，editors，Andrzej Mostowski and Foundational Studies，pages 72－91．IOS Press，Amsterdam， 2008.
R W．V．O．Quine．Concatenation as a basis for arithmetic． J．Symbolic Logic，11（4）：105－114， 1946.

目 R．M．Solovay．Interpretability in set theories．Unpublished letter to P．Hájek，Aug．17，1976， http：／／www．cs．cas．cz／～hajek／RSolovayZFGB．pdf．

References, part 2

(V. Švejdar. On interpretability in the theory of concatenation. A preprint, submitted for publication, 2007.
厜 V. Švejdar. An interpretation of Robinson arithmetic in its Grzegorczyk's weaker variant. Fundamenta Informaticae, 81(1-3):347-354, 2007.
A. Tarski, A. Mostowski, and R. M. Robinson. Undecidable Theories. North-Holland, Amsterdam, 1953.
(A. Visser. Growing commas: A study of sequentiality and concatenation. A preprint, submitted for publication, based on LGPS preprint 257, 2007.

