Relatives of Robinson Arithmetic

Vítězslav Švejdar

Dept. of Logic, College of Arts and Philosophy, Charles University, $\label{eq:http://www.cuni.cz/~svejdar/} http://www.cuni.cz/~svejdar/$

Logica 08, Hejnice, June 2008

Outline

Introduction: the importance and properties of Robinson arithmetic

TC, the theory of concatenation

The theory F, its mutual interpretability with TC

- It is quite weak, e.g. $\mathbb{Q} \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I\Delta_0$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

- It is quite weak, e.g. $Q \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I\Delta_0$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

- It is quite weak, e.g. $Q \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I\Delta_0$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

- It is quite weak, e.g. $Q \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like IΔ₀.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

- It is quite weak, e.g. $Q \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I\Delta_0$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

- It is quite weak, e.g. $Q \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I\Delta_0$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

- It is quite weak, e.g. $Q \not\vdash \forall x \forall y (x + y = y + x)$.
- Gödel 1st incompleteness theorem is true for it.
- It is finitely axiomatizable.
- It interprets some stronger theories, like $I\Delta_0$.
- Gödel 2nd theorem is also true for it (after its meaning for such a weak theory is clarified).

Constants ε , a, b, binary function symbol \frown (usually omitted), and axioms:

TC1: $\forall x (x\varepsilon = \varepsilon x = x)$, TC2: $\forall x \forall y \forall z ((xy)z = x(yz))$, TC3: $\forall x \forall y \forall u \forall v (xy = uv \rightarrow) \quad \forall x \forall y \forall u \forall v (xy = u \& wv = y) \lor (uw = x \& wy = v)))$, TC4: $a \neq \varepsilon \& \forall x \forall y (xy = a \rightarrow x = \varepsilon \lor y = \varepsilon)$, TC5: $b \neq \varepsilon \& \forall x \forall y (xy = b \rightarrow x = \varepsilon \lor y = \varepsilon)$, TC6: $a \neq b$.

Example proof of $\forall x (xa \neq \varepsilon)$: For, if $xa = \varepsilon$, then bxa = b. By TC5, $bx = \varepsilon$ or $a = So \ bx = \varepsilon$, a contradiction with TC6.

Constants ε , a, b, binary function symbol \frown (usually omitted), and axioms: $x \qquad y$

TC1: $\forall x(x\varepsilon = \varepsilon x = x),$	í í	
TC2: $\forall x \forall y \forall z((xy)z = x(yz)),$		
TC3: $\forall x \forall y \forall u \forall v (xy = uv \rightarrow$	<u> </u>	$_{v}$
$\rightarrow \exists w((xw = u \& wv = y) \lor (uw = x \& wy = v))),$		
TC4: $a \neq \varepsilon \& \forall x \forall y (xy = a \rightarrow x = \varepsilon \lor y = \varepsilon)$,		
TC5: $b \neq \varepsilon \& \forall x \forall y (xy = b \rightarrow x = \varepsilon \lor y = \varepsilon)$,		
TC6: $a \neq b$.		

Example proof of $\forall x (xa \neq \varepsilon)$: For, if $xa = \varepsilon$, then bxa = b. By TC5, $bx = \varepsilon$ or So $bx = \varepsilon$, a contradiction with TC6.

Constants ε , a, b, binary function symbol \frown (usually omitted), and axioms: $x \quad y$

Example proof of $\forall x (xa \neq \varepsilon)$: For, if $xa = \varepsilon$, then bxa = b. By TC5, $bx = \varepsilon$ of So $bx = \varepsilon$, a contradiction with TC6

Constants ε , a, b, binary function symbol \frown (usually omitted), and axioms: $x \quad y$

Example proof of $\forall x (xa \neq \varepsilon)$:

For, if $xa = \varepsilon$, then bxa = b. By TC5, $bx = \varepsilon$ or $a = \varepsilon$. So $bx = \varepsilon$, a contradiction with TC6.

Further examples

 $TC \vdash \forall x \forall y (xy = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon),$ $TC \not\vdash \forall z (az \neq z), \text{ and so } TC \not\vdash \forall x \forall y \forall z (xz = yz \rightarrow x = y),$ $TC \vdash \forall x \forall y (xa = ya \rightarrow x = y).$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Further examples

 $\begin{array}{l} \mathsf{TC} \vdash \forall x \forall y (xy = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon), \\ \mathsf{TC} \nvDash \forall z (az \neq z), \text{ and so } \mathsf{TC} \nvDash \forall x \forall y \forall z (xz = yz \rightarrow x = y) \\ \mathsf{TC} \vdash \forall x \forall y (xa = ya \rightarrow x = y). \end{array}$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Further examples

 $\begin{array}{l} \mathsf{TC} \vdash \forall x \forall y (xy = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon), \\ \mathsf{TC} \not\vdash \forall z (\mathsf{a}z \neq z), \text{ and so } \mathsf{TC} \not\vdash \forall x \forall y \forall z (xz = yz \rightarrow x = y), \\ \mathsf{TC} \vdash \forall x \forall y (xa = ya \rightarrow x = y). \end{array}$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Further examples

 $\begin{array}{l} \mathsf{TC} \vdash \forall x \forall y (xy = \varepsilon \ \rightarrow \ x = \varepsilon \ \& \ y = \varepsilon), \\ \mathsf{TC} \not\vdash \forall z (\mathsf{a}z \neq z), \ \mathsf{and} \ \mathsf{so} \ \mathsf{TC} \not\vdash \forall x \forall y \forall z (xz = yz \ \rightarrow \ x = y), \\ \mathsf{TC} \vdash \forall x \forall y (x\mathsf{a} = y\mathsf{a} \ \rightarrow \ x = y). \end{array}$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Further examples

 $\begin{array}{l} \mathsf{TC} \vdash \forall x \forall y (xy = \varepsilon \ \rightarrow \ x = \varepsilon \ \& \ y = \varepsilon), \\ \mathsf{TC} \not\vdash \forall z (\mathsf{a}z \neq z), \ \mathsf{and} \ \mathsf{so} \ \mathsf{TC} \not\vdash \forall x \forall y \forall z (xz = yz \ \rightarrow \ x = y), \\ \mathsf{TC} \vdash \forall x \forall y (x\mathsf{a} = y\mathsf{a} \ \rightarrow \ x = y). \end{array}$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Further examples

 $\begin{array}{l} \mathsf{TC} \vdash \forall x \forall y (xy = \varepsilon \ \rightarrow \ x = \varepsilon \ \& \ y = \varepsilon), \\ \mathsf{TC} \not\vdash \forall z (\mathsf{a}z \neq z), \ \mathsf{and} \ \mathsf{so} \ \mathsf{TC} \not\vdash \forall x \forall y \forall z (xz = yz \ \rightarrow \ x = y), \\ \mathsf{TC} \vdash \forall x \forall y (x\mathsf{a} = y\mathsf{a} \ \rightarrow \ x = y). \end{array}$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Further examples

 $\begin{array}{l} \mathsf{TC} \vdash \forall x \forall y (xy = \varepsilon \ \rightarrow \ x = \varepsilon \ \& \ y = \varepsilon), \\ \mathsf{TC} \not\vdash \forall z (\mathsf{a}z \neq z), \ \mathsf{and} \ \mathsf{so} \ \mathsf{TC} \not\vdash \forall x \forall y \forall z (xz = yz \ \rightarrow \ x = y), \\ \mathsf{TC} \vdash \forall x \forall y (x\mathsf{a} = y\mathsf{a} \ \rightarrow \ x = y). \end{array}$

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is a *substring* of y and write $x \sqsubseteq y$. Then one can prove e.g. $\forall x \forall y (a \sqsubseteq xy \rightarrow a \sqsubseteq x \lor a \sqsubseteq y)$. In the same situation where uxv = y, one might be tempted to say that u is an occurrence of xin y. However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46]. Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk & Zdanowski proved essential undecidability of TC in [GZ08].

Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007) TC interprets Q; in symbols, TC \triangleright Q. So Q and TC are mutually interpretable.

Proof

Show TC \triangleright Q⁻, where Q⁻ is a weaker variant of Q in which addition + and multiplication \cdot are possibly non-total. Then use Q⁻ \triangleright Q, and transitivity of \triangleright .

Remark

Q[−] ▷ Q is proved in [Šve07b] using the (never published!) Solovay method of shortening of cuts, see [Sol76].

Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007)

TC interprets Q; in symbols, TC \triangleright Q. So Q and TC are mutually interpretable.

Proof

Show TC \triangleright Q⁻, where Q⁻ is a weaker variant of Q in which addition + and multiplication \cdot are possibly non-total. Then use Q⁻ \triangleright Q, and transitivity of \triangleright .

Remark

Q[−] ▷ Q is proved in [Šve07b] using the (never published!) Solovay method of shortening of cuts, see [Sol76].

Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007)

TC interprets Q; in symbols, TC \triangleright Q. So Q and TC are mutually interpretable.

Proof

Show TC \triangleright Q⁻, where Q⁻ is a weaker variant of Q in which addition + and multiplication \cdot are possibly non-total. Then use Q⁻ \triangleright Q, and transitivity of \triangleright .

Remark

 $Q^- \triangleright Q$ is proved in [Šve07b] using the (never published!) Solovay method of shortening of cuts, see [Sol76].

$$\begin{array}{ll} \mathsf{F1:} & \forall x (x\varepsilon = \varepsilon x = x), \\ \mathsf{F2:} & \forall x \forall y \forall z ((xy)z = x(yz)), \\ \mathsf{F3:} & \forall x \forall y \forall z (yx = zx \lor xy = xz \to y = z), \\ \mathsf{F4:} & \forall x \forall y (xa \neq yb), \end{array}$$

F5:
$$\forall x (x \neq \varepsilon \rightarrow \exists u (x = ua \lor x = ub)).$$

Some example sentences

 $\begin{array}{ll} \mathsf{F} \vdash \forall x (x \mathbf{a} \neq \varepsilon), & \mathsf{F} \vdash \mathbf{a} \neq \varepsilon, \\ \mathsf{F} \vdash \forall x \forall y (xy = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon), \\ \mathsf{F} \vdash \forall x \forall y (xy = \mathbf{a} \rightarrow x = \varepsilon \lor y = \varepsilon), \end{array}$

so a letter can be created *ex nihilo*, as Albert Visser puts it.

Historical problem

Szmielew and Tarski claim in [TMR53] that F interprets Q, but give no proof.

Vítězslav Švejdar, Charles U. in Prague

Relatives of Robinson Arithmetic

F1:
$$\forall x (x\varepsilon = \varepsilon x = x),$$

F2: $\forall x \forall y \forall z ((xy)z = x(yz)),$
F3: $\forall x \forall y \forall z (yx = zx \lor xy = xz \to y = z)$
F4: $\forall x \forall y (xa \neq yb),$
F5: $\forall x \forall y (xa \neq yb),$

F5:
$$\forall x (x \neq \varepsilon \rightarrow \exists u (x = ua \lor x = ub)).$$

Some example sentences

 $\begin{array}{l} \mathsf{F} \vdash \forall x (x \mathbf{a} \neq \varepsilon), \quad \mathsf{F} \vdash \mathbf{a} \neq \varepsilon, \\ \mathsf{F} \vdash \forall x \forall y (x y = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon), \\ \mathsf{F} \vdash \forall x \forall y (x y = \mathbf{a} \rightarrow x = \varepsilon \lor y = \varepsilon), \\ \mathsf{F} \vdash \forall x \forall y (\mathbf{a} \sqsubseteq x y \rightarrow \mathbf{a} \sqsubseteq x \lor \mathbf{a} \sqsubseteq y), \end{array}$

so a letter can be created *ex nihilo*, as Albert Visser puts it.

Historical problem

Szmielew and Tarski claim in [TMR53] that F interprets Q, but give no proof.

Vítězslav Švejdar, Charles U. in Prague

Relatives of Robinson Arithmetic

F1:
$$\forall x(x\varepsilon = \varepsilon x = x),$$

F2: $\forall x \forall y \forall z((xy)z = x(yz)),$
F3: $\forall x \forall y \forall z(yx = zx \lor xy = xz \to y = z),$
F4: $\forall x \forall y(xa \neq yb),$
F5: $\forall x(x \neq c \to \exists y(x = yz) \lor x = yb))$

F5:
$$\forall x (x \neq \varepsilon \rightarrow \exists u (x = ua \lor x = ub)).$$

Some example sentences

 $\begin{array}{ll} \mathsf{F} \vdash \forall x (x \mathbf{a} \neq \varepsilon), & \mathsf{F} \vdash \mathbf{a} \neq \varepsilon, \\ \mathsf{F} \vdash \forall x \forall y (x y = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon), \\ \mathsf{F} \vdash \forall x \forall y (x y = \mathbf{a} \rightarrow x = \varepsilon \lor y = \varepsilon), \\ \mathsf{F} \vdash \forall x \forall y (\mathbf{a} \sqsubseteq x y \rightarrow \mathbf{a} \sqsubseteq x \lor \mathbf{a} \sqsubseteq y), \end{array}$

so a letter can be created ex nihilo, as Albert Visser puts it.

Historical problem

Szmielew and Tarski claim in [TMR53] that F interprets Q, but give no proof.

F1:
$$\forall x(x\varepsilon = \varepsilon x = x),$$

F2: $\forall x \forall y \forall z((xy)z = x(yz)),$
F3: $\forall x \forall y \forall z(yx = zx \lor xy = xz \to y = z),$
F4: $\forall x \forall y (xa \neq yb),$
F5: $\forall x(x \neq \varepsilon \to \exists u(x = ua \lor x = ub)).$

F5:
$$\forall x (x \neq \varepsilon \rightarrow \exists u (x = ua \lor x = ub))$$

Some example sentences

 $\mathsf{F} \vdash \forall x (x \mathbf{a} \neq \varepsilon), \quad \mathsf{F} \vdash \mathbf{a} \neq \varepsilon,$ $\mathsf{F} \vdash \forall x \forall y (xy = \varepsilon \rightarrow x = \varepsilon \& y = \varepsilon),$ $\mathsf{F} \vdash \forall x \forall y (xy = \mathsf{a} \rightarrow x = \varepsilon \lor y = \varepsilon),$ $\mathsf{F} \not\vdash \forall x \forall y (\mathtt{a} \sqsubseteq xy \rightarrow \mathtt{a} \sqsubseteq x \lor \mathtt{a} \sqsubseteq y),$

so a letter can be created *ex nihilo*, as Albert Visser puts it.

Historical problem

Szmielew and Tarski claim in [TMR53] that F interprets Q, but give no proof.

Theorem 2 (Ganea)

F interprets TC, i.e. $F \triangleright TC$. So from $TC \triangleright Q$ we have $F \triangleright Q$.

Proof (a simplification of Ganea's proof)

In F (or in TC), write $x \Box y$ for $\exists v (vx = y)$, i.e. for "x is an end segment of y". Then define *tame* strings as follows

 $\mathsf{Tame}(x) \equiv \forall v \forall z (z \Box v x \to z \Box x \lor x \Box z).$

One can verify that tame strings include ε , a, and b, are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3 TC interprets F.

Proof Now in TC, work with *radical* strings, where $\operatorname{Rad}(x) \equiv \forall y \forall z (yx = zx \rightarrow y = z).$ Radical strings include ε , a, and b, etc.

Vítězslav Švejdar, Charles U. in Prague

Relatives of Robinson Arithmetic

< 🗗 >

Theorem 2 (Ganea)

F interprets TC, i.e. $F \triangleright TC$. So from $TC \triangleright Q$ we have $F \triangleright Q$.

Proof (a simplification of Ganea's proof)

In F (or in TC), write $x \Box y$ for $\exists v(vx = y)$, i.e. for "x is an end segment of y". Then define *tame* strings as follows

 $\mathsf{Tame}(x) \equiv \forall v \forall z (z \square vx \to z \square x \lor x \square z).$

One can verify that tame strings include ε , a, and b, are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3 TC interprets F.

Proof Now in TC, work with *radical* strings, where $\operatorname{Rad}(x) \equiv \forall y \forall z (yx = zx \rightarrow y = z)$ Radical strings include ε , a, and b, etc.

Vítězslav Švejdar, Charles U. in Prague

Relatives of Robinson Arithmetic

Theorem 2 (Ganea)

F interprets TC, i.e. $F \triangleright TC$. So from $TC \triangleright Q$ we have $F \triangleright Q$.

Proof (a simplification of Ganea's proof)

In F (or in TC), write $x \Box y$ for $\exists v(vx = y)$, i.e. for "x is an end segment of y". Then define *tame* strings as follows

 $\mathsf{Tame}(x) \equiv \forall v \forall z (z \square vx \to z \square x \lor x \square z).$

One can verify that tame strings include ε , a, and b, are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3 TC interprets F.

Proof Now in TC, work with *radical* strings, where $\operatorname{Rad}(x) \equiv \forall y \forall z (yx = zx \rightarrow y = z)$ Radical strings include ε , a, and b, etc.

Vítězslav Švejdar, Charles U. in Prague

Relatives of Robinson Arithmetic

Theorem 2 (Ganea)

F interprets TC, i.e. $F \triangleright TC$. So from $TC \triangleright Q$ we have $F \triangleright Q$.

Proof (a simplification of Ganea's proof)

In F (or in TC), write $x \Box y$ for $\exists v(vx = y)$, i.e. for "x is an end segment of y". Then define *tame* strings as follows

 $\mathsf{Tame}(x) \equiv \forall v \forall z (z \Box vx \to z \Box x \lor x \Box z).$

One can verify that tame strings include ε , a, and b, are closed under concatenation, and satisfy the editor axiom TC3.

Theorem 3

TC interprets F.

Proof

Now in TC, work with *radical* strings, where Rad(x) $\equiv \forall y \forall z (yx = zx \rightarrow y = z)$. Radical strings include ε , a, and b, etc.

References, part 1

- M. Ganea. Arithmetic on semigroups. A preprint, submitted for publication, 2007.
- A. Grzegorczyk. Undecidability without arithmetization. *Studia Logica*, 79(2):163–230, 2005.
- A. Grzegorczyk and K. Zdanowski. Undecidability and concatenation. In A. Ehrenfeucht, V. W. Marek, and M. Srebrny, editors, *Andrzej Mostowski and Foundational Studies*, pages 72–91. IOS Press, Amsterdam, 2008.
- W. V. O. Quine. Concatenation as a basis for arithmetic. *J. Symbolic Logic*, 11(4):105–114, 1946.
- R. M. Solovay. Interpretability in set theories. Unpublished letter to P. Hájek, Aug. 17, 1976, http://www.cs.cas.cz/~hajek/RSolovayZFGB.pdf.

References, part 2

- V. Švejdar. On interpretability in the theory of concatenation. A preprint, submitted for publication, 2007.
- V. Švejdar. An interpretation of Robinson arithmetic in its Grzegorczyk's weaker variant. Fundamenta Informaticae, 81(1-3):347-354, 2007.
- A. Tarski, A. Mostowski, and R. M. Robinson. Undecidable Theories. North-Holland, Amsterdam, 1953.
- A. Visser. Growing commas: A study of sequentiality and concatenation. A preprint, submitted for publication, based on LGPS preprint 257, 2007.