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Outline

Introduction: the importance and properties of Robinson arithmetic

TC, the theory of concatenation

The theory F, its mutual interpretability with TC
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Properties of Robinson arithmetic Q

Robinson arithmetic Q was defined in [TMR53] as an axiomatic
theory with the language {0, S, +, ·} and with seven simple axioms
like ∀x∀y(x + S(y) = S(x + y)). Main properties:

• It is quite weak, e.g. Q 6⊢ ∀x∀y(x + y = y + x).

• Gödel 1st incompleteness theorem is true for it.

• It is finitely axiomatizable.

• It interprets some stronger theories, like I∆0.

• Gödel 2nd theorem is also true for it
(after its meaning for such a weak theory is clarified).
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TC, the theory of concatenation

Constants ε, a, b, binary function symbol ⌢ (usually omitted),
and axioms:

TC1: ∀x(xε = εx = x),

TC2: ∀x∀y∀z((xy)z = x(yz)),

TC3: ∀x∀y∀u∀v(xy = uv →

→ ∃w((xw = u & wv = y) ∨ (uw = x & wy = v))),

TC4: a 6= ε & ∀x∀y(xy = a → x = ε ∨ y = ε),

TC5: b 6= ε & ∀x∀y(xy = b → x = ε ∨ y = ε),

TC6: a 6= b.

Example proof of ∀x(xa 6= ε):

For, if xa = ε, then bxa = b. By TC5, bx = ε or a = ε.
So bx = ε, a contradiction with TC6.
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Some properties of TC

Further examples

TC ⊢ ∀x∀y(xy = ε → x = ε & y = ε),
TC 6⊢ ∀z(az 6= z), and so TC 6⊢ ∀x∀y∀z(xz = yz → x = y),
TC ⊢ ∀x∀y(xa = ya → x = y).

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is
a substring of y and write x ⊑ y . Then one can prove e.g.
∀x∀y(a ⊑ xy → a ⊑ x ∨ a ⊑ y). In the same situation where
uxv = y , one might be tempted to say that u is an occurrence of x

in y . However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46].
Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk
& Zdanowski proved essential undecidability of TC in [GZ08].
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V́ıtězslav Švejdar, Charles U. in Prague Relatives of Robinson Arithmetic 5/10



Properties of Robinson arithmetic TC, the theory of concatenation The theory F

Some properties of TC

Further examples

TC ⊢ ∀x∀y(xy = ε → x = ε & y = ε),
TC 6⊢ ∀z(az 6= z), and so TC 6⊢ ∀x∀y∀z(xz = yz → x = y),
TC ⊢ ∀x∀y(xa = ya → x = y).

Substrings and (no good notion of) occurrences

If uxv = y for some u and v then one can say that x is
a substring of y and write x ⊑ y . Then one can prove e.g.
∀x∀y(a ⊑ xy → a ⊑ x ∨ a ⊑ y). In the same situation where
uxv = y , one might be tempted to say that u is an occurrence of x

in y . However, u is not uniquely determined.

Some history

First ideas can be traced back to Tarski and Quine [Qui46].
Grzegorczyk proved undecidability of TC in [Grz05]. Grzegorczyk
& Zdanowski proved essential undecidability of TC in [GZ08].
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Connection between Q and TC

Theorem 1 (Visser, V.Š., Ganea, Sterken, 2007)

TC interprets Q; in symbols, TC ⊲ Q.
So Q and TC are mutually interpretable.

Proof
Show TC ⊲ Q−, where Q− is a weaker variant of Q in which
addition + and multiplication · are possibly non-total.
Then use Q−

⊲ Q, and transitivity of ⊲.

Remark
Q−

⊲ Q is proved in [Šve07b] using the (never published!)
Solovay method of shortening of cuts, see [Sol76].
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Axioms and properties of the theory F

F1: ∀x(xε = εx = x),

F2: ∀x∀y∀z((xy)z = x(yz)),

F3: ∀x∀y∀z(yx = zx ∨ xy = xz → y = z),

F4: ∀x∀y(xa 6= yb),

F5: ∀x(x 6= ε → ∃u(x = ua ∨ x = ub)).

Some example sentences

F ⊢ ∀x(xa 6= ε), F ⊢ a 6= ε,
F ⊢ ∀x∀y(xy = ε → x = ε & y = ε),
F ⊢ ∀x∀y(xy = a → x = ε ∨ y = ε),
F 6⊢ ∀x∀y(a ⊑ xy → a ⊑ x ∨ a ⊑ y),
so a letter can be created ex nihilo, as Albert Visser puts it.

Historical problem

Szmielew and Tarski claim in [TMR53] that F interprets Q,
but give no proof.
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Mutual interpretability of F and TC

Theorem 2 (Ganea)

F interprets TC, i.e. F ⊲ TC. So from TC ⊲ Q we have F ⊲ Q.

Proof (a simplification of Ganea’s proof)

In F (or in TC), write x y for ∃v(vx = y), i.e. for “x is an end
segment of y”. Then define tame strings as follows

Tame(x) ≡ ∀v∀z(z vx → z x ∨ x z).
One can verify that tame strings include ε, a, and b, are closed
under concatenation, and satisfy the editor axiom TC3.

Theorem 3
TC interprets F.

Proof
Now in TC, work with radical strings, where

Rad(x) ≡ ∀y∀z(yx = zx → y = z).
Radical strings include ε, a, and b, etc.
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One can verify that tame strings include ε, a, and b, are closed
under concatenation, and satisfy the editor axiom TC3.

Theorem 3
TC interprets F.

Proof
Now in TC, work with radical strings, where

Rad(x) ≡ ∀y∀z(yx = zx → y = z).
Radical strings include ε, a, and b, etc.
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