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Introduction: self-reference and modal logic

Prominent self-referential sentences

Gödel sentence
Gödel sentence of a theory T is a self-referential sentence ν saying
I am not provable in T , i.e. satisfying T ⊢ ν ≡ ¬Pr(ν).

Rosser sentence
of a theory T is a sentence ρ saying there exists a proof of my
negation in T which is less that or equal to any possible proof of
myself, i.e. satisfying T ⊢ ρ ≡ ∃y(Prf(¬ρ, y) & ∀v<y ¬Prf(ρ, v)).

Notation
Prf(x , y) is a proof predicate, i.e. an arithmetical formula saying
y is a proof of x in T .
Pr(x) is a provability predicate; defined as ∃yPrf(x , y) and saying
x is provable in T .
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Introduction: self-reference and modal logic

The importance of provability logic

Important difference

T ⊢ Con(T ) →¬Pr(ρ) & ¬Pr(¬ρ).

T ⊢ Con(T ) →¬Pr(ν), but T 6⊢ Con(T ) →¬Pr(¬ν).

Provability logic GL

GL ⊢ �(p ≡ ¬�p) & ¬�⊥→¬�p.

Important remark (and a definition)

The arithmetical interpretation of the modal formula �A, i.e. an
arithmetical sentence of the form Pr(. .), is a Σ-sentence.
Σ-sentence results from a decidable formula by existential
quantification.
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The theory R of Guaspari and Solovay

The theory R of Guaspari and Solovay

Language

The usual modal language with propositional atoms, logical
connectives, logical constants ⊤ and ⊥, and the modality �, plus
two additional binary modalities � and ≺ which are applicable only
to formulas starting with �.

Example

A & �A � �B → �B is a shorthand for (A & (�A � �B)) → �B.
(A ∨ �B) � �B is not a formula.

Arithmetical interpretation

The interpretation (and reading) of �A � �B and �A ≺ �B

is A has a proof which is less than or equal to (or less than,
respectively) any proof of B.
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The theory R of Guaspari and Solovay

Axioms and rules of R are the axioms and rules of provability logic:

A1: all propositional tautologies,

A2: �(A → B) → (�A → �B),

A3: �A → ��A,

A4: �(�A → A) → �A,

MP: A → B, A / B,

Nec: A / �A.

plus �A / A, plus the basic axioms about witness comparison:

B1: �A � �B → �A,

B2: �A � �B & �B � �C → �A � �C ,

B3: �A ≺ �B ≡ �A � �B & ¬(�B � �A),

B4: �A ∨ �B → �A � �B ∨ �B ≺ �A,

plus the two persistency axioms:

P: �A � �B → �(�A � �B), �A ≺ �B → �(�A ≺ �B).
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The theory R of Guaspari and Solovay

Example proof: R ⊢ �(p ≡ �¬p � �p) & ¬�⊥→¬�p & ¬�¬p

Proof
Assume �p or �¬p. Then �¬p � �p or �p ≺ �¬p by B4.

�¬p � �p → �¬p, by B1

→ �(�¬p � �p), by P

→ �p, since �(�¬p � �p → p)

→ �⊥,

�p ≺ �¬p → �p, by B1

→ �(�p ≺ �¬p), by P

→ �¬(�¬p � �p), by B3

→ �¬p, since �(p → �p � �¬p)

→ �⊥.
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An alternative theory with witness comparison modalities

Generalized proof predicate of PA

Prfh(x , y) ≡ the axioms of PA (with numerical codes)
less than y are sufficient to prove (in the
usual sense) the sentence x .

Fact
If the formalized proof predicate is used to interpret the modalities
� and ≺ then �A � �B and �A ≺ �B are not Σ-sentences, and
so the persistency axioms P are not valid.

The theory WR

has the axiom and the rule

W: �A → �(¬B → �A ≺ �B), �A / ¬B → �A ≺ �B

instead of the axiom P and the rule �A / A of the theory R.
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An alternative theory with witness comparison modalities

The alternative theory SR

Language

The language of SR has two sorts of propositional atoms, normal
atoms p, q, . . . and Σ-atoms s, t, . . .
Σ-formulas are formulas built up from ⊤, ⊥, Σ-atoms, and
formulas starting with � using & and ∨ only.

Axioms
are as in WR, but W and the corresponding rule are replaced by
stronger versions:

S: �(E → A) → �(E & ¬B → �A ≺ �B),

E → A / E & ¬B → �A ≺ �B,

E ∈ Σ,

E ∈ Σ.
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An alternative theory with witness comparison modalities

Example modal formula provable in SR . . .

If s is a Σ-atom then
SR ⊢ �(p ≡ �¬p � �p) → (�(s → p) ∨ �(s →¬p) → �¬s).

. . . and its arithmetical significance

If ϕ is a Rosser sentence constructed from the generalized proof
predicate then neither ϕ nor ¬ϕ is provable from any consistent
Σ-sentence.

Put otherwise, both ϕ and ¬ϕ are Π1-conservative: each
Π1-sentence (i.e. negated Σ-sentence) provable from ϕ or ¬ϕ
is provable.

For Peano arithmetic, Π1-conservativity is the same as
interpretability.
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An alternative theory with witness comparison modalities
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