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Abstract
The recursion theoretic limit lemma, saying that each function with a X, 1
graph is a limit of certain function with a A, 1 graph, is provable in BX,, ;1.
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Let N be the set of all natural numbers and let a function G : N¥*! — N be
such that for each z1,..,x the function s — G(z,s), where z is a shorthand
for x1,..,xy, is eventually constant. Then we use lim; G(z,s) to denote the
value the function s — G(z,s) assumes in each sufficiently large s. The limit
lemma says that for each set A C N* such that A € Ay there exists a recursive
function G : N**1 — N such that lims G(z,s) = 1 whenever [z1,..,7%] € A4,
and lim; G(z,s) = 0 whenever [z1,..,2;] ¢ A. For the definition of X,,, IT,,
and A, where n > 1, see e.g. [5], and recall that a set is Ay if and only if it is
recursive, and that A,, = X, N II,,. The version of the limit lemma for functions
says that for each function F : N¥ — N whose graph is X there exists a recursive
G : N**1 — N such that F(z) = lims G(z, s) for each k-tuple [zy,..,zx]. As can
be seen e.g. from [4] and [2], the limit lemma is a useful tool in recursion theory.

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical
language {+,-,0,S,<,<}; its axioms can be described as a finite set of base
axioms plus the induction scheme. For details see e.g. [3]. Bounded quantifiers
are quantifiers of the form Yo<z, Jv<z, Vv<z, and Jv<z. A bounded formula, or
a Ag-formula, is a formula all quantifiers of which are bounded. A X, -formula is
a formula having the form Jv;Vved.. v, @, with n alternating quantifiers, where
the first quantifier is existential and the matrix ¢ is a Ag-formula. A II, -formula
is a formula of the form Yuvi3woV .. v, where again ¢ € Ag. So Xy = g = Ay.
The theory IT', where T" is ¥, or II,, is PA with the induction scheme restricted
to I'-formulas. The collection scheme is the scheme

VyVe(Yo<a3zp(v, 2, y) — ItVv<zIz<tp(v, 2,¥)).
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The theory BI', where again I' is X,, or II,, is 1A extended by the collection
scheme restricted to I'-formulas. It is known that for each n the theories IX,
and III, are equivalent, and also BII, and B, ; are equivalent. BY, ; is a
theory stronger than IX,,, but weaker than I¥,, ;. For details and proofs, see
again e.g. [3]. A useful property of IX,, is that it proves induction for ¥¢ (%, )-for-
mulas, i.e. for formulas built up from ¥, -formulas using logical connectives and
bounded quantification. Also the least number principle for 3¢ (%,,)-formulas is
provable in I¥,,. A useful property of BX, ;1 is that any formula obtained from
Yn+1-formulas by bounded quantification is BX,, ;1-equivalent to a 3, 4 1-formula.
This fact can be used to verify that each Xo(3,)-formula is BY,,1-equivalent to
a X,41-formula. We will also use the fact that ¥o(X,)-induction is provable
in B2n+1.

P. Héjek and A. Kucera show in [2] that the limit lemma for sets is provable
in I¥;. P. Clote in an earlier paper [1] uses a version of the limit lemma for X, ;o
functions, saying that any function having a X, ;9 graph is a limit of a function
having a A, 41 graph, and proves this version in BX,, 5. I show that the results
from [2] and [1] can be considerably improved: the limit lemma for X, 5 functions
is provable already in BX, 4.

Note that speaking about sets definable in a model, in the formulation of
Lemma 1 and Theorem 1 below, is a way to overcome the difficulty that one
cannot directly speak about sets and functions in the arithmetical language. In
proofs of Lemma 1 and Theorem 1 we are less careful and ignore this difficulty.
Recall that if n > 1 then a set is X, if and only if it is 3,,-definable in the standard
model of arithmetic. So a set simultaneously 3,- and II,-definable in a model
corresponds to a set which, on metamathematical level, is A,,.

Lemma 1 Let M be a model of BY, 1 with domain M and let A C MF* pe
simultaneously Xy 1o- and Il,yo-definable in M. Then there exists a function
G : MM — M with a graph Yo(X,)-definable in M such that limg G(z,s) = 1
whenever [z1,..,2;] € A and lims G(z, s) = 0 whenever [z1,..,x;] ¢ A.

Proof Let the set A be as specified and let ¢ and @ be ¥,-formulas such that
A= {|x1,.., 7] ; IuVvp(z,u,v) } and A = {[z1,.., 2] ; FJuVvy(z,u,v) }, where
A is the complement of A. Think of the k-tuple z as fixed and think of ¢ and ¢
as two zero-one tables unbounded in two directions, with » running down and v
running to the right. One and only one of the two tables contains rows consisting
entirely of ones. Let the function H be defined as follows:

H(z,s) =

{ 1 if Vu<s(Mo<st(z,u,v) — Fu <uVo<sp(z,u',v))
0 otherwise.

Assume that [z1,..,25] ¢ A. Then FuVoy(z,u,v) and YuTv—p(z,u,v). Let ug
be some number satisfying Vo (z, ug,v); note that the existence of least such
number is not guaranteed in BX, ;. By BX, 4, there exists a number sy such
that Vu<ugIv<sg—p(z,u,v). We can assume so > ug. If s > sg then there
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Figure 1: Computing scores

exists a number u < s, namely wug, such that Vo<sv(z,u,v) and simultaneously
Vo' <uFv<s—p(z,u',v). So H(z,s) =0 for all such s, i.e. limg H(z,s) = 0. The
proof that limg H(z,s) = 1 whenever [z1,..,2,] € A is similar. The graph of H
is 3p(Xy). So the function H is as desired. QED

Theorem 1 Let M be a model of BY,, 41 with domain M and let F : M* — M
have a graph ¥, . o-definable in M. Then there exists a function G : M*+1 — M
with a graph ¥o(X,)-definable in M such that F(z) = lims G(z, s) for each z.

Proof Let F' € ¥, 4o with k variables be given. It is clear that F' € A, 5 since
for the complement of its graph we have [z,y] ¢ F < 3/ (v # y&[z,y'] € F). By
Lemma 1 applied to the graph of F' there exists a function H € ¥y(%,,) such that
lim; H(z,y,t) = 1 whenever F(z) =y and lim; H(z,y,t) = 0 whenever F(z) # y.
As in the proof of Lemma 1, let z be fixed and think of the function H as a table
with ¢ running down and y running to the right. Let the score of a number y at
stage s be defined as the length of maximal contiguous segment of ones which lies
in column y, the bottom end of which is in row s and the top end of which is in
arow t > y. If H is, for example, as in Fig. 1 then the scores of numbers 2, 3,
and 5 at stage 5 are 2, 2, and 1 respectively, and the score of any other number at
stage 5 is zero. The scores of numbers 2, 3, and 5 at stage 8 are 2, 5, and 4. Let
G(z, s) be defined as the least y having maximal possible score at stage s. So in
our example from Fig. 1 we have G(z,5) = 2 and G(z,8) = 3. It is evident that
a score of a number y < s at stage s is a number not exceeding s+1—y < s+1
and that all y’s greater than s have zero score at stage s. The formula

Ju<s+1z+u=s+1&y <u&Vi<s(u<t— H(z,y,t) =1)),

i.e. the formula the score of y at stage s is at least z, is a 3¢(X,,)-formula. So by
¥o(X,)-induction available in BY,, 11, there exists a greatest z satisfying this
formula, and the score of a number y at stage s is correctly defined. Also,
the formulas the number z is the maximal score at stage s and the number y is
the least number having the maximal score at stage s are Yo(X,)-formulas. So



again by Xo(X,)-induction, the maximal score exists, and the function G is cor-
rectly defined. We have to verify that lims G(z,s) = F'(z). Let yo = F(z). We
know that limg H(z,y0,t) = 1. So let the number ¢y be such that ty > yo and
Vi(t > to— H(z,yo,t) = 1). We also know that lim, H(x,y,t) = 0 for each y < ¢
such that y # yo. Thus

Vy<to(y # yo — Jt(t > to & H(z,y,t) = 0)).

By X,t1-collection (more precisely, by ¥o(X,)-collection available in BX,, ;1)
there exists an sg such that

Vy<to(y # yo — F<so(t > to & H(z,y,t) = 0)).

This means that if s > s then the score of all numbers y < ¢y such that y # yg at
stage s is lower than the score of yy. Since ones occuring in column y above the
diagonal line do not count, the score of any y > ¢ at stage s is automatically lower
than the score of yo. So G(z,s) = yp for each s > sg, and thus lim, G(z, s) = yo.
QED
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