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Abstract

The recursion theoretic limit lemma, saying that each function with a Σn+2

graph is a limit of certain function with a ∆n+1 graph, is provable in BΣn+1.
Keywords Limit lemma, fragments of arithmetic, collection scheme.
AMS 2000 Subject Classification 03F30, 03D55.

Let N be the set of all natural numbers and let a function G : Nk+1 → N be
such that for each x1, . . , xk the function s 7→ G(x, s), where x is a shorthand
for x1, . . , xk, is eventually constant. Then we use lims G(x, s) to denote the
value the function s 7→ G(x, s) assumes in each sufficiently large s. The limit
lemma says that for each set A ⊆ Nk such that A ∈ ∆2 there exists a recursive
function G : Nk+1 → N such that lims G(x, s) = 1 whenever [x1, . . , xk] ∈ A,
and lims G(x, s) = 0 whenever [x1, . . , xk] /∈ A. For the definition of Σn, Πn,
and ∆n, where n ≥ 1, see e.g. [5], and recall that a set is ∆1 if and only if it is
recursive, and that ∆n = Σn ∩Πn. The version of the limit lemma for functions
says that for each function F : Nk → N whose graph is Σ2 there exists a recursive
G : Nk+1 → N such that F (x) = lims G(x, s) for each k-tuple [x1, . . , xk]. As can
be seen e.g. from [4] and [2], the limit lemma is a useful tool in recursion theory.

Peano arithmetic PA is an axiomatic theory formulated in the arithmetical
language {+, ·, 0,S,≤, <}; its axioms can be described as a finite set of base
axioms plus the induction scheme. For details see e.g. [3]. Bounded quantifiers
are quantifiers of the form ∀v≤x, ∃v≤x, ∀v<x, and ∃v<x. A bounded formula, or
a ∆0-formula, is a formula all quantifiers of which are bounded. A Σn-formula is
a formula having the form ∃v1∀v2∃ . . vnϕ, with n alternating quantifiers, where
the first quantifier is existential and the matrix ϕ is a ∆0-formula. A Πn-formula
is a formula of the form ∀v1∃v2∀ . . vnϕ where again ϕ ∈ ∆0. So Σ0 = Π0 = ∆0.
The theory IΓ, where Γ is Σn or Πn, is PA with the induction scheme restricted
to Γ-formulas. The collection scheme is the scheme

∀y∀x(∀v≤x∃zϕ(v, z, y)→∃t∀v≤x∃z≤tϕ(v, z, y)).
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The theory BΓ, where again Γ is Σn or Πn, is I∆0 extended by the collection
scheme restricted to Γ-formulas. It is known that for each n the theories IΣn

and IΠn are equivalent, and also BΠn and BΣn+1 are equivalent. BΣn+1 is a
theory stronger than IΣn, but weaker than IΣn+1. For details and proofs, see
again e.g. [3]. A useful property of IΣn is that it proves induction for Σ0(Σn)-for-
mulas, i.e. for formulas built up from Σn-formulas using logical connectives and
bounded quantification. Also the least number principle for Σ0(Σn)-formulas is
provable in IΣn. A useful property of BΣn+1 is that any formula obtained from
Σn+1-formulas by bounded quantification is BΣn+1-equivalent to a Σn+1-formula.
This fact can be used to verify that each Σ0(Σn)-formula is BΣn+1-equivalent to
a Σn+1-formula. We will also use the fact that Σ0(Σn)-induction is provable
in BΣn+1.

P. Hájek and A. Kučera show in [2] that the limit lemma for sets is provable
in IΣ1. P. Clote in an earlier paper [1] uses a version of the limit lemma for Σn+2

functions, saying that any function having a Σn+2 graph is a limit of a function
having a ∆n+1 graph, and proves this version in BΣn+2. I show that the results
from [2] and [1] can be considerably improved: the limit lemma for Σn+2 functions
is provable already in BΣn+1.

Note that speaking about sets definable in a model, in the formulation of
Lemma 1 and Theorem 1 below, is a way to overcome the difficulty that one
cannot directly speak about sets and functions in the arithmetical language. In
proofs of Lemma 1 and Theorem 1 we are less careful and ignore this difficulty.
Recall that if n ≥ 1 then a set is Σn if and only if it is Σn-definable in the standard
model of arithmetic. So a set simultaneously Σn- and Πn-definable in a model
corresponds to a set which, on metamathematical level, is ∆n.

Lemma 1 Let M be a model of BΣn+1 with domain M and let A ⊆ Mk be
simultaneously Σn+2- and Πn+2-definable in M. Then there exists a function
G : Mk+1 → M with a graph Σ0(Σn)-definable in M such that lims G(x, s) = 1
whenever [x1, . . , xk] ∈ A and lims G(x, s) = 0 whenever [x1, . . , xk] /∈ A.

Proof Let the set A be as specified and let ϕ and ψ be Σn-formulas such that
A = { [x1, . . , xk] ; ∃u∀vϕ(x, u, v) } and A = { [x1, . . , xk] ; ∃u∀vψ(x, u, v) }, where
A is the complement of A. Think of the k-tuple x as fixed and think of ϕ and ψ
as two zero-one tables unbounded in two directions, with u running down and v
running to the right. One and only one of the two tables contains rows consisting
entirely of ones. Let the function H be defined as follows:

H(x, s) =
{

1 if ∀u≤s(∀v≤sψ(x, u, v)→∃u′≤u∀v≤sϕ(x, u′, v))
0 otherwise.

Assume that [x1, . . , xk] /∈ A. Then ∃u∀vψ(x, u, v) and ∀u∃v¬ϕ(x, u, v). Let u0

be some number satisfying ∀vψ(x, u0, v); note that the existence of least such
number is not guaranteed in BΣn+1. By BΣn+1 there exists a number s0 such
that ∀u≤u0∃v≤s0¬ϕ(x, u, v). We can assume s0 ≥ u0. If s ≥ s0 then there
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0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 . . .
1 0 0 0 0 0 0 0 0 . . .
2 0 0 0 0 0 1 0 0 . . .
3 0 0 0 0 0 1 0 0 . . .
4 0 0 1 1 0 1 0 0 . . .
5 0 0 1 1 0 1 0 0 . . .
6 0 0 0 1 0 1 0 0 . . .
7 0 0 1 1 0 1 0 0 . . .
8 0 0 1 1 0 1 0 0 . . .

Figure 1: Computing scores

exists a number u ≤ s, namely u0, such that ∀v≤sψ(x, u, v) and simultaneously
∀u′≤u∃v≤s¬ϕ(x, u′, v). So H(x, s) = 0 for all such s, i.e. lims H(x, s) = 0. The
proof that lims H(x, s) = 1 whenever [x1, . . , xn] ∈ A is similar. The graph of H
is Σ0(Σn). So the function H is as desired. QED

Theorem 1 Let M be a model of BΣn+1 with domain M and let F : Mk → M
have a graph Σn+2-definable in M. Then there exists a function G : Mk+1 → M
with a graph Σ0(Σn)-definable in M such that F (x) = lims G(x, s) for each x.

Proof Let F ∈ Σn+2 with k variables be given. It is clear that F ∈ ∆n+2 since
for the complement of its graph we have [x, y] /∈ F ⇔ ∃y′(y′ 6= y&[x, y′] ∈ F ). By
Lemma 1 applied to the graph of F there exists a function H ∈ Σ0(Σn) such that
limt H(x, y, t) = 1 whenever F (x) = y and limt H(x, y, t) = 0 whenever F (x) 6= y.
As in the proof of Lemma 1, let x be fixed and think of the function H as a table
with t running down and y running to the right. Let the score of a number y at
stage s be defined as the length of maximal contiguous segment of ones which lies
in column y, the bottom end of which is in row s and the top end of which is in
a row t ≥ y. If H is, for example, as in Fig. 1 then the scores of numbers 2, 3,
and 5 at stage 5 are 2, 2, and 1 respectively, and the score of any other number at
stage 5 is zero. The scores of numbers 2, 3, and 5 at stage 8 are 2, 5, and 4. Let
G(x, s) be defined as the least y having maximal possible score at stage s. So in
our example from Fig. 1 we have G(x, 5) = 2 and G(x, 8) = 3. It is evident that
a score of a number y ≤ s at stage s is a number not exceeding s + 1− y ≤ s + 1
and that all y’s greater than s have zero score at stage s. The formula

∃u≤s + 1(z + u = s + 1 & y ≤ u & ∀t≤s(u ≤ t→H(x, y, t) = 1)),

i.e. the formula the score of y at stage s is at least z, is a Σ0(Σn)-formula. So by
Σ0(Σn)-induction available in BΣn+1, there exists a greatest z satisfying this
formula, and the score of a number y at stage s is correctly defined. Also,
the formulas the number z is the maximal score at stage s and the number y is
the least number having the maximal score at stage s are Σ0(Σn)-formulas. So
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again by Σ0(Σn)-induction, the maximal score exists, and the function G is cor-
rectly defined. We have to verify that lims G(x, s) = F (x). Let y0 = F (x). We
know that lims H(x, y0, t) = 1. So let the number t0 be such that t0 ≥ y0 and
∀t(t ≥ t0→H(x, y0, t) = 1). We also know that lims H(x, y, t) = 0 for each y ≤ t0
such that y 6= y0. Thus

∀y≤t0 (y 6= y0 →∃t(t ≥ t0 & H(x, y, t) = 0)).

By Σn+1-collection (more precisely, by Σ0(Σn)-collection available in BΣn+1)
there exists an s0 such that

∀y≤t0 (y 6= y0 →∃t≤s0 (t ≥ t0 & H(x, y, t) = 0)).

This means that if s ≥ s0 then the score of all numbers y ≤ t0 such that y 6= y0 at
stage s is lower than the score of y0. Since ones occuring in column y above the
diagonal line do not count, the score of any y > t0 at stage s is automatically lower
than the score of y0. So G(x, s) = y0 for each s ≥ s0, and thus lims G(x, s) = y0.
QED
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