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Abstract

In Gödel fuzzy propositional logic, neither conjunction nor implication is
expressible (definable) in terms of the remaining three logical connectives.

In classical propositional logic, propositions are associated with two truth values
1 (truth) and 0 (falsity). In fuzzy logics further (intermediate) truth values lying
between 0 and 1 are possible. Usually the truth values are linearly ordered and
it is common to assume that they are elements of the real interval [0, 1].

In Gödel fuzzy propositional logic G (see Gödel [5] and/or Hájek [6]), we
deal with propositional formulas built up from (say denumerable infinite set
of) propositional atoms using the logical connectives & (conjunction), ∨ (dis-
junction), → (implication) and ¬ (negation). The meaning of the four logical
connectives is determined by their truth functions defined as follows. The truth
function of conjunction and disjunction are the functions min (minimum) and
max (maximum). The truth function of implication is the residuum function ⇒,
where x⇒y = y if y < x and x⇒y = 1 otherwise. The truth function of negation
is the function − defined by −x = x ⇒ 0 (so, in this paper, the symbol − does
not denote subtraction). The real interval [0, 1] equipped with the functions
min, max, ⇒ and − is called the standard G-algebra and denoted [0, 1]G.

A truth evaluation is a function from propositional atoms to [0, 1]. In
full analogy to the classical case, any truth evaluation has a uniquely de-
termined extension defined on all propositional formulas and respecting the
truth functions of the standard G-algebra defined above. A propositional for-
mula A is a G-tautology if v(A) = 1 for each truth evaluation v. An example
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of a G-tautology is any formula of the form ¬A ∨ ¬¬A: if v(A) 6= 0 then
v(¬A) = 0 and v(¬¬A) = 1, if v(A) = 0 then v(¬A) = 1; in both cases
max(v(¬A), v(¬¬A)) = 1. An example of a formula that is not a G-tautology
is ¬¬p→ p: for v satisfying v(p) = 1

2
we have v(¬¬p→ p) = 1 ⇒

1

2
= 1

2
. Clearly

any G-tautology is a classical tautology.
A common way to construct a Hilbert (or Frege) style calculus for the logic G

is to take a Hilbert calculus for intuitionistic propositional logic (e.g. the version
from [7] with eight axiom schemes and modus ponens) and to enrich it with the
prelinearity scheme (A→B)∨(B→A). Let us denote the resulting calculus again
by the letter G. The fact that the calculus G is complete w.r.t. the standard
G-algebra was proved by M. Dummett in [4]; the logic G is sometimes also called
Dummett logic.

A semantics for intuitionistic logic can be defined using Kripke models. A
Kripke frame for intuitionistic logic is a structure 〈W,R〉 where R is an ordering
on a (nonempty) set W . The relation R is called an accessibility relation of the
frame 〈W,R〉. A Kripke model for intuitionistic logic is a triple 〈W,R, ‖−〉 such
that 〈W,R〉 is a Kripke frame and ‖− (a forcing relation) is a relation between
elements of W and propositional formulas satisfying the following conditions for
all x, y ∈ W , all propositional formulas A and B and all propositional atoms p:

• if x R y and x ‖− p then y ‖− p

• x ‖− A & B iff x ‖− A and x ‖− B

• x ‖− A ∨ B iff x ‖− A or x ‖− B

• x ‖− ¬A iff y ‖−/ A for all y such that x R y

• x ‖− A → B iff y ‖−/ A or y ‖− B for all y such that x R y.

The first condition is called a persistency condition. This condition is easily
shown to be true for all formulas, not just atoms. A Kripke model 〈W,R, ‖−〉
is a counter-model for a formula A if x ‖−/ A for some x ∈ W . A formula A is
an intuitionistic tautology if it has no counter-model. For more about Kripke
semantics for intuitionistic logic see e.g. [3].

The following definition and lemma show that Kripke models can be useful
also in connection with Gödel fuzzy logic. A Kripke frame 〈W,R〉 is connected
if x R y or y R x whenever there is a z such that z R x and z R y. Otherwise
speaking, 〈W,R〉 is connected if the set of all elements of W accessible from
any z is linearly ordered.

Lemma 1 The Gödel fuzzy logic G is sound w.r.t. the class of all Kripke models
〈W,R, ‖−〉 whose frame 〈W,R〉 is connected.

Proof If x ‖−/ (A → B) ∨ (B → A) then, by the definition of Kripke model,
there exist y1 and y2 such that x R y1, x R y2, y1 ‖− A, y1 ‖−/ B, y2 ‖− B,
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Figure 1: Kripke models . . .

y2 ‖−/ A. By the persistency condition, y1 and y2 must be incomparable. Thus
the prelinearity scheme can be violated only in a model the frame of which is not
connected. The rest is soundness of intuitionistic logic with respect to Kripke
models (of any kind). QED

Let A be a formula unprovable in G. By completeness of G w.r.t. the standard
G-algebra [0, 1]G (i.e. by the Dummett’s result mentioned above) there exists a
truth evaluation e (i.e. a function from propositional atoms to [0, 1]) such that
e(A) < 1. Let V be the set of all truth values of atoms occuring in A (i.e. V
is the range of the restriction of e to atoms in A), put W = V ∪ {0, 1}. For
x, y ∈ W , say that x R y if y ≤ x in the sense of the ordering of [0, 1]. Put
x ‖− p if x ≤ e(p). A straightforward induction on complexity of B shows
x ‖− B ⇔ x ≤ v(B) for any x ∈ W and any formula B not containing
other propositional atoms than those occuring in the original formula A. Since
e(A) < 1, we have 1 ‖−/ A. Thus 〈W,R, ‖−〉 is a Kripke counter-model for A.

The above argument shows that the logic G is complete w.r.t. the class of all
(finite) linearly ordered Kripke models. For our purposes, however, this argu-
ment is somewhat misleading because it may suggest that (connected) Kripke
models which are not linearly ordered are useless when thinking about the
logic G. Indeed they are useless for the purpose of showing that a given formula
is not a G-tautology. But our point is to show that they may be useful for other
purposes.

Let K = 〈W,R, ‖−〉 be a Kripke model. Let DK(A) = { x ∈ W ; x ‖− A }.
We say that A defines the set DK(A). A set X ⊆ W is definable if X = DK(A)
for some formula A. Sometimes we shall write only D(A) instead of DK(A).
Note that any definable set X is upwards closed, i.e. y ∈ X whenever x ∈ X
and x ≤ y.1

Lemma 2 Let K = 〈W,R, ‖−〉 be any Kripke model. If G ⊢ A → B then
DK(A) ⊆ DK(B). If A and B are G-equivalent then DK(A) = DK(B).

Proof Obvious.

1The fact that we use the word “definable” as a technical term is the reason why we
have decided to speak about “inter-expressibility”, rather than “inter-definability”, of logical
connectives.
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Theorem 1 The formula p&q is not G-equivalent to any formula built up from
p and q using only →, ∨ and ¬. The formula p→ q is not G-equivalent to any
formula built up from p and q using only &, ∨ and ¬. Thus, in the logic G,
neither conjunction nor implication is expressible in terms of the remaining three
logical connectives.

Proof Consider the Kripke model in the left of Fig. 1. Its domain is {a, b, c}.
Besides the pair [a, b] indicated by an arrow, its accessibility relation contains
also three non-indicated elements [a, a], [b, b], and [c, c]. The model is connected.
The atom p defines the set {a, b} and the atom q defines the set {b, c}. The
formula p&q defines the set {b}. We claim and prove by induction the following:
if A contains no conjunction and b ∈ D(A) then a ∈ D(A) or c ∈ D(A). Thus
no A not containing & can define the set {b} and hence no such formula is
equivalent to p & q.

Let us show the induction step for implication, the remaining cases are similar
or simpler. Let A be B → C and let b ∈ D(A). So b /∈ D(B) or b ∈ D(C).
If b /∈ D(B) then, by the definition of Kripke model, we have a /∈ D(B) and
{a, b} ⊆ D(B → C). If b ∈ D(C) then, by the induction hypothesis for C,
a ∈ D(C) or c ∈ D(C). This is sufficient since D(C) ⊆ D(B → C).

Similar argument shows that, in the model on the right hand side of Fig. 1, the
formula p→ q defines the set {b, c} while no formula not containing implication
can define the same set. QED

We close the paper with some remarks. First, the fact that in intuitionistic
logic conjunction and implication is not expressible in terms of the remaining
connectives is known for a long time and is thoroughly elaborated e.g. in [2].
The models in Fig. 1 are, with some modifications, taken from [2]. These models
work also for intuitionistic logic.

Second, the question whether conjunction or implication is G-expressible in
terms of the remaining connectives was raised in [1], where a partial result was
proved: in G, conjunction is not expressible using only implication and negation.

Third, using the method of definable sets in Kripke models one can show that
in intuitionistic logic disjunction in not expressible in terms of the remaining
connectives. On the other hand, in Gödel fuzzy logic disjunction is expressible
in terms of conjunction and implication, see [1].

Our fourth and final remark is for readers who prefer thinking about truth
values to thinking about Kripke models. With any Kripke model 〈W,R, ‖−〉, a
Heyting algebra H is naturally associated: the domain H of H are the definable
subsets of W , the extremal truth values 1H and 0H are W and ∅ respectively,
and the operations of H are ∪, ∩ and the residuum function ⇒ defined by
X ⇒ Y =

⋃
{ Z ∈ H ; Z ∩ X ⊆ Y }. For example, the left model in Fig. 1 has

six definable sets, namely {a, b, c}, {a, b}, {b, c}, {b}, {c} and ∅ (exercise: which
formula defines the set {c}?). A Heyting algebra H = 〈H,∧,∨,⇒, 0, 1〉 is said
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Figure 2: . . . and corresponding Heyting algebras

to be a G-algebra if it satisfies the equality (x ⇒ y)∨ (y ⇒ x) = 1 for all x and y.
The Heyting algebras corresponding to the models from Fig. 1 are on Fig. 2.
Both are G-algebras. In the left algebra the element x can be obtained from
some remaining elements by ∧ but cannot be obtained from remaining elements
(and 0 and 1) using ∨ and ⇒. In the right algebra the element x can be obtained
by ⇒ but cannot be obtained from the remaining elements using ∧, ∨ and the
negation function x 7→ (x ⇒ 0).
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