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Abstract

We analyze the classical proof of Paris and Kirby, showing that Σn+1-col-
lection is not provable using Σn-induction. We then mention another
principle that is also violated in the model of Paris and Kirby and that
might be weaker than Σn+1-collection: there is no Σn+1 definable bounded
one-to-one function.

1 Robinson and Peano arithmetics, induction

Robinson arithmetic Q is a weak axiomatic theory of natural numbers. Its lan-
guage contains the symbols + and · for addition and multiplication of natural
numbers, the symbol S for the successor function (adding the number one),
and the constant 0. The original version of Robinson arithmetic, as defined
in [TMR53], has seven simple axioms Q1–Q7, where for example the axioms
Q4 and Q5 are ∀x(x + 0 = x) and ∀x∀y(x + S(y) = S(x + y)). Because of the
bounded quantifiers (to be discussed soon), it nowadays seems more practical to
add the symbols ≤ and < for unstrict and strict ordering to the language of Q,
and formulate two additional axioms about these symbols:

Q8: ∀x∀y(x ≤ y ≡ ∃v(v + x = y)),

Q9: ∀x∀y(x < y ≡ ∃v(S(v) + x = y)).

The resulting version of Q, with nine axioms, is conservative over the original
version defined in [TMR53].

Despite the fact that the two sample axioms Q4 and Q5 mentioned above
look like a recursive definition of uniquely defined addition, expected properties
of addition, like associativity and commutativity, are not provable in Q. The
same is true about multiplication. Expected properties of operations can be

1

http://www.collegepublications.co.uk/other/?00028
http://www.collegepublications.co.uk/other/?00028


2 V. Švejdar

proved in Peano arithmetic PA, which is a theory obtained from Q by adding
the induction schema: the sentence

Ind: ∀y(φ(0, y) & ∀x(φ(x, y)→ φ(S(x), y))→∀xφ(x, y)),

where y stands for y1, . . , yk, is an axiom for any choice of a formula φ and a vari-
able x. The variable x can be called induction variable, or variable of induction,
the remaining variables y1, . . , yk are parameters. It is understood that all free
variables of φ are among x, y1, . . , yk. When using Ind to show that ∀xφ(x, y), we
say that ∀xφ(x, y) is proved by induction on x for (fixed) parameters y1, . . , yk.
As an example or an exercise, the reader may want to write down proofs of the
sentences ∀x(0 + x = x), ∀x∀y(S(x) + y = S(x + y)) and ∀x∀y(x + y = y + x).
Peano arithmetic is incomplete because Gödel incompleteness theorems apply to
it. However, it is a strong theory: natural examples of independent sentences
are difficult to find. Peano arithmetic can also prove the schema

B: ∀y∀x(∀u<x∃vφ(u, v, y)→∃z∀u<x∃v<zφ(u, v, y)),

where again y1, . . , yk are parameters. This schema is called collection schema,
or boundedness schema. It prevents the existence of an arithmetically definable
relation that is unbounded on some x, where a relation unbounded on x is an
“impossible” relation whose characteristic function is such as that in Fig. 1: for
every bound z there are columns u < x that contain nothing but zeros in all lines
v < z, but, what might not be apparent in Fig. 1, every column u < x contains
some ones.

2 Hierarchy of formulas and bounded induction

To prove the expected properties of operations, like the commutativity of addi-
tion mentioned above, it is often sufficient to use the induction schema for very
simple or even open (quantifier free) formula φ. The study of fragments of PA is
motivated by the following question: in which situations, if ever, does one need
induction (or collection) for a complicated φ, with alternating quantifiers?

Let ∀v<zφ and ∃v<zφ stand for ∀v(v < z → φ) and ∃v(v < z & φ) re-
spectively, and similarly for ∀v≤zφ and ∃v≤zφ. The expressions ∀v<z , ∃v<z ,
∀v≤z , and ∀v≤z , where v and z are different variables, are called bounded quan-
tifiers. A formula is a bounded formula, or a ∆0-formula, if all quantifiers in it are
bounded. A formula is Σn if it has the form ∃v1∀v2∃ . . vnφ where φ is bounded.
Thus a Σn-formula has a prefix of n alternating quantifiers the first of which
is existential, followed by a ∆0-formula. Symmetrically, a Πn-formula has the
form ∀v1∃v2∀ . . vnφ where φ is ∆0-formula.

The class of all relations definable by ∆0-formulas in the structure N of
natural numbers is an easily defined (proper) subclass of the class of all recursive
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0 . . . . . . . . . x

Figure 1: An unbounded relation on x

relations. It is quite inclusive in the sense that all r.e. relations can be obtained
from ∆0 relations by the projection operation (i.e. by existential quantification).
It is also inclusive in the sense that it contains many important sets like the
divisibility relation, the set of all primes, and the set of all powers of two. It also
contains the graph of the function n 7→ 2n; that is, there is a ∆0-formula ε(x, y)
such that m = 2n if and only if N |= ε(n,m), where n and m are the numerals for
n and m, i.e. the closed terms S(S(. . (0) . .), having the corresponding number
of occurrences of the symbol S. This fact has a not so trivial proof, see [Pud83]
or [Ben62].

I∆0 is a theory like Peano arithmetic, but with the induction schema re-
stricted to ∆0-formulas. The theory I∆0 is also called bounded arithmetic, but
this name is sometimes also used for similar theories that can be even weaker
and that can have a somewhat different language.

In I∆0, i.e. using induction for ∆0-formulas only, one can prove various facts
about addition and multiplication: both operations are associative and commu-
tative, multiplication is distributive over addition, for each pair x and y there is
a unique z such that z+x = y or z+ y = x. It is also possible to develop coding
of finite sets and sequences. Thus writing x ∈ w has a good sense in I∆0. We
also have

I∆0 ⊢ ε(0, 1) & ∀x∀y∀z(ε(x, y) → ε(x+ 1, z) ≡ z = 2 · y) (1)

where ε is the formula mentioned above, that defines the graph of the exponen-
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Figure 2: A simple construction of a model of I∆0

tiation function. Also, one can prove in I∆0 that every two formulas ε satisfy-
ing (1) are equivalent; thus exponentiation with base 2 has a unique meaning
in I∆0. However, ∀x∃yε(x, y) is not provable in I∆0. That is, the function
x 7→ 2x is a uniquely defined but possibly partial function. Let Exp be the sen-
tence ∀x∃yε(x, y), and let I∆0+Exp be I∆0 enhanced with the sentence Exp as
an additional axiom. We take I∆0+Exp as the base theory, although we know
that this choice is somewhat arbitrary. For some purposes, like coding of logical
syntax, a weaker axiom would be sufficient, while in some other situations a
stronger additional axiom would be needed. In I∆0+Exp, coding of finite sets
and sequences works as expected; in particular, there are sets and sequences of
arbitrary (finite) lengths. The structure N of natural numbers is a model (the
standard model) of the theories PA, I∆0, and I∆0+Exp. It is also a model of
all the remaining theories we will consider. However, one should not forget that
all these theories have nonstandard models as well. So for example, when we
speak, inside a theory, about the length of a (finite) sequence, it is good to see a
nonstandard element of some model behind that length. We also have ∆0-com-
prehension in I∆0+Exp: for each ∆0-formula φ(v), possibly with parameters,
I∆0+Exp ⊢ ∀z∃w∀v(v ∈ w ≡ v < z & φ(v)). That is, for each z there exists a
number w that codes the set { v ; v < z & φ(v) }.

Consider a model M |= PA like in Fig. 2, with domain M , the standard
part N and a nonstandard element a. Put K = { b ∈M ; ∃m∈N(b < am) }. The
set K is evidently closed under + and ·. Thus the structure K with domain K
and operations induced fromM is a substructure ofM. Induction on complexity
of φ(x1, . . , xk) ∈ ∆0 shows that if b1, . . , bk ∈ K, then K |= φ(b) ⇔ M |= φ(b).
From this, absoluteness of ∆0-formulas, it follows that K |= I∆0. For each
standard m, there exists a standard k such that 2x > xm for all x > k. For
example, if m = 3, then 2x > xm for all x > 9. If m = 4, then 2x > xm for
all x > 16. Since a is nonstandard, all elements a2, a3, a4, . . . are less than 2a.
It follows that 2a /∈ K. From this we have that 2a does not exist in K, i.e.
K /|= ∃yε(a, y). Thus we have K /|= Exp.

3 The hierarchy of strong fragments of PA

Let IΓ, for Γ = Σn or Γ = Πn, be the theory obtained from I∆0 by adding the
schema Ind(Γ), the induction schema restricted to Γ-formulas. Thus IΣ0 and IΠ0
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are the same theories as I∆0. For the formula ε(x, y) defining the graph of the
function x 7→ 2x, one can show by induction on x that ∀x∃yε(x, y). Since
∃yε(x, y) is a Σ1-formula, the sentence ∀x∃yε(x, y), i.e. the sentence Exp, is an
example of a sentence provable in IΣ1 but not in I∆0. Using dummy quantifiers,
it is easy to show that a Σn- or a Πn-formula is (already in predicate logic, and
thus in all theories considered here), equivalent to a Σm-formula for each m > n,
and also to a Πm-formula for each m > n. Thus the sentence Exp, a useful axiom
possibly added to I∆0, brings nothing new if added to IΣn for n > 0 or to IΠn

for n > 1.
Besides induction and collection, we can consider yet another axiom schema,

the least number principle

LNP: ∀y(∃xφ(x, y)→∃x(φ(x, y) & ∀v<x¬φ(v, y))).

Similarly as in the case of the induction schema, let LNP(Γ) and B(Γ) be the
restriction of the schema LNP or B to Γ-formulas, where again Γ is Σn or Πn.
Let LΓ and BΓ be the theories obtained from I∆0 by adding the schema LNP(Γ)
or B(Γ). We will see that BΠ0 is not a subtheory of I∆0+Exp. However, it is
not difficult to check that the model K from Fig. 2 is a model of BΠ0.

Assume that φ(u, v, s) is a Πn-formula, with possible parameters that are not
shown. Assume further that ∃sφ(u, v, s) defines an unbounded relation on x,
i.e. that ∀u<x∃v∃sφ(u, v, s), but ¬∃z∀u<x∃v<z∃sφ(u, v, s). Then we have
∀u<x∃w∃v<w∃s<wφ(u, v, s). This is so because if ∃v∃sφ(u, v, s), then one can
pick an arbitrary w > max{v, s} to obtain ∃v<w∃s<wφ(u, v, s). Furthermore,

¬∃z∀u<x∃w<z∃v<w∃s<wφ(u, v, s).

Indeed, from ∀u<x∃w<z∃v<w∃s<wφ(u, v, s) we can evidently conclude that
∀u<x∃v<z∃sφ(u, v, s), which would contradict our assumption. Therefore, if
∃sφ(u, v, s) defines an unbounded relation on x, then ∃v<w∃s<wφ(u, v, s) de-
fines an unbounded relation (in x and w) on the same x. The whole argument
shows that B(Πn) implies B(Σn+1), provided ∃v<w∃s<wφ(u, v, s) is a Πn-for-
mula. Which it is, as it follows from (a) of the following theorem.

Theorem 1 The theory BΠn proves the following.
(a) Σn+1- and Πn+1-formulas are closed under bounded quantification. That is,
a formula obtained from Σn+1- or Πn+1-formula by bounded quantification is
in BΠn equivalent to some Σn+1- or Πn+1-formula respectively.
(b) Σn+2-formulas are closed under ∃, Πn+2-formulas are closed under ∀.
(c) Both Σn+2- and Πn+2-formulas are closed under conjunctions and disjunc-
tions.

Σ0- and Π0-formulas are trivially closed under bounded quantification and
Boolean connectives—recall that Σ0 = Π0 = ∆0. It is also true that Σ1-formulas
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are closed under ∃ and Π1-formulas are closed under ∀, and that both Σ1- and
Π1-formulas are closed under conjunctions and disjunctions. These facts are not
listed in the previous theorem because their proofs do not require the collection
schema (do not require anything above I∆0).

Theorem 2 (a) BΣn+1 and BΠn are equivalent theories.
(b) All IΣn, IΠn, LΣn, and LΠn are equivalent theories.
(c) IΣn+1 proves BΠn, and BΠn proves IΣn.

We already gave the proof of (a). The remaining proofs are similarly natural.
Theorems 1 and 2 contain the basic relationships between strong fragments of PA
and are well known. Details can be found in [PK78] and [HP93]. With Theorem 2
in mind, we have the following hierarchy of theories:

I∆0+Exp ⇐ BΠ0+Exp ⇐ IΣ1 ⇐ BΠ1 ⇐ . . . ⇐ PA

⇕ ⇕ ⇕
BΣ1+Exp IΠ1 BΣ2

⇕
LΣ1

⇕
LΠ1

A formula is Σ0(Σn) if it is obtained from Σn formulas using Boolean con-
nectives and bounded quantification. It is known that IΣn for n ≥ 1 proves
Σ0(Σn)-comprehension: for each Σ0(Σn)-formula φ(v) the theory IΣn proves
that for each z there exists a number w that codes the set { v ; v < z & φ(v) }.
It is clear that Σ0(∆0) = ∆0. We have already noted that I∆0+Exp proves
∆0-comprehension.

A universal Σn+1-formula is a formula ∃vγ(z, x, v) such that γ ∈ Πn and for
any Σn+1-formula ψ(x) there exists a number e ∈ N such that ψ(x) is in IΣ1

equivalent to ∃vγ(e, x, v). Universal Σn+1-formulas exist for each n ≥ 1. Using
universal Σn+1-formulas, it is possible to show that all theories IΣn and BΠn for
n ≥ 1 are finitely axiomatizable.

4 The hierarchy of fragments does not collapse

We now rephrase the proof of [PK78] that BΠn is strictly stronger than IΣn.
We will use the notion of sparse relation. We say that a relation defined by a
formula θ(u, v) is sparse with respect to t if ∀u∃vθ(u, v) but, for each s, the set
{ [u, v] ; u < s & v < s & θ(u, v) } has less than t elements. In other words, if a
relation is sparse, then every square s× s contains less than t elements (pairs) of
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that relation. The definition of sparse relation only makes sense in the presence
of comprehension for the formula θ: only then the number of pairs in a square
s × s is uniquely determined. Thus let the notion of sparse relation be made
more precise as follows: in I∆0+Exp, we speak about sparse relations defined by
formulas θ ∈ ∆0, while in IΣn for n ≥ 1 we speak about sparse relations defined
by formulas θ ∈ Σ0(Σn). The following theorem says that a sparse relation is
something even more weird than a relation unbounded on x. The lemma is easily
proved using Theorem 2(a): a Σ0(Σn)-formula is Σn+1 in IΣn.

Theorem 3 In IΣn+Exp, if a relation defined by θ ∈ Σ0(Σn) is sparse with
respect to t, then it is unbounded on any x ≥ t. Thus BΠn+Exp proves that
there is no Σ0(Σn) sparse relation with respect to any t.

Let n be given and let M be a model of PA containing nonstandard Σn+1-de-
finable elements, where an element a ∈ M is Σn+1-definable if it is the only
element of M satisfying certain Σn+1-formula. To obtain M, we can use Gödel
incompleteness theorems: a witness for a false Σ1-sentence (if 1st Gödel in-
completeness theorem us used) or the least proof of contradiction in formal-
ized PA (if 2nd incompleteness theorem us used) is ∆0-definable and nonstan-
dard. Thus we can begin with the same M regardless of the number n ∈ N. Let
K = { a ∈M ; a is Σn+1-definable in M}.

First, we claim that K contains all standard elements of M, also some non-
standard elements, and is closed under addition and multiplication. Indeed, if
ψ1(x) ∈ Σn+1 defines a and ψ2(x) ∈ Σn+1 defines b, then the formula

∃u∃v(ψ1(u) & ψ2(v) & x = u+ v) (2)

is satisfied by exactly one element of the model M, the sum a + b, and so it
defines the element a+ b. The argument for a · b is analogical. The formula (2)
is Σn+1 because M is a model of full PA (in which Σn+1-formulas are closed
under ∃ and &). Thus K, i.e. the set K with operations inherited from M, is a
substructure of M. A difference to the model in Fig. 2 is that K might be not
downwards closed.

Second, we claim that if φ(x, y1, . . , yk) is a Σn+1-formula, a1, . . , ak elements
of K and M |= ∃xφ(x, a), then there exists a b ∈ K such that M |= φ(b, a).
Indeed, let φ(x, y) be ∃vθ(v, x, y) where θ ∈ Πn, and let ψ1(x), . . , ψk(x) be
Σn+1-formulas that define the elements a1, . . , ak respectively. Let [v, x] 7→ (v, x)
be the pairing function, i.e. the function defined as (v, x) = 1

2 (v+x)(v+x+1)+v,
and let l and r be its inverse functions, i.e. the functions satisfying the equations
(l(w), r(w)) = w, l((v, x)) = v, and r((v, x)) = x for every w, v, and x. Then

∃u1 . . ∃uk∃w(ψ1(u1) & . . & ψk(uk) & θ(l(w), r(w), u) &

& ∀z<w¬θ(l(z), r(z), u) & x = l(w))
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is a Σn+1 formula satisfied by exactly one element of M, the left part l(w) of the
least w satisfying θ(l(w), r(w), u) with respect to the uniquely defined elements
a1, . . , ak. Recall that the trick of working with the left part of the least w
satisfying θ(l(w), r(w), u) rather than the least x satisfying ∃vθ(v, x, u) is taken
from recursion theory. The least x satisfying ∃vθ(v, x, u) is not Σn+1-definable.

Third, a usual argument from model theory shows that Σn+1-formulas are
absolute between K and M: if φ(y) ∈ Σn+1 and a1, . . , ak ∈ K, then K |= φ(a)
if and only if M |= φ(a). We can describe this by saying that K is a Σn+1-ele-
mentary substructure of M and denote it as K ≼n+1 M.

Fourth, from K ≼n+1 M it follows that any Πn+2 sentence valid in M is also
valid in K. Since all axioms of IΣn are Πn+2, we have K |= IΣn.

Fifth, it remains to show what is violated in K. Let ∃vγ(z, x, v) where γ ∈ Πn

be a universal Σn+1-formula. Since every a ∈ K is Σn+1-definable in M and
every Σn+1 formula ψ(x) is equivalent to ∃vγ(e, x, v) for some e ∈ N, we see
that for every a ∈ K there exists an e ∈ N such that a is the only element x
of M satisfying ∃vγ(e, x, v) in M. Let a nonstandard t ∈ K be fixed. Since
Σn+1-formulas are absolute between K and M, we have

K |= ∀x∃z<t∀u(∃vγ(z, u, v) ≡ u = x), (3)

which says that, in K, every number x is the only number u (in the entire
universe) satisfying ∃vγ(z, u, v) for a suitable z < t. Work in K and consider the
following relation between z, x, and w:

x ≤ w & ∀w′<w∀x′<w¬γ(z, x′, w′) &

& ∀x′≤w (x′ ̸= x → ¬γ(z, x′, w)) &

& ∃w′≤wγ(z, x, w′).

(4)

Let the formula (4) be denoted δ(z, x, w). To understand its meaning, think
of z as fixed, imagine a characteristic function of a binary relation like in Fig. 1,
with columns x or x′ and lines w′, and think of w as a size of a square. Then
the three lines in (4) say that (i) the square (w + 1) × (w + 1) contains zeros
everywhere except possibly in the right and upper borders, i.e. in column w or
in line w, (ii) there are zeros in all columns x′ ̸= x (even in line w), but (iii),
there are some ones in column x. Put otherwise, either x = w and the column x
is the only column containing some ones, or x < w and the coordinates of the
only one in the entire square are [x,w]. Evidently, there exists at most one
pair [x,w] such that δ(z, x, w). For such a pair it is the case that x ≤ w.
Consider now all pairs [x,w] such that ∃z<tδ(z, x, w), now with t fixed as said
above. Then ∃z<tδ(z, x, w) can be seen as a union of t binary relations each
of which is at most single-element. Thus the relation ∃z<tδ(z, x, w) satisfies
the condition from the definition of sparse relation with respect to t + 1: every
square s × s contains less than t + 1 elements of this relation. Let x be given
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and consider z like in (3), satisfying z < t and ∀u(∃vγ(z, u, v) ≡ u = x). If
w is the least number such that ∃w′≤wγ(z, x, w′), then δ(z, x, w). This shows
that ∀x∃w∃z<tδ(z, x, w), and thus ∃z<tδ(z, x, w) satisfies also the remaining
condition from the definition of sparse relation.

We can summarize that ∃z<tδ(z, x, w) is a sparse relation; hence by Theo-
rem 3, BΠn is violated in K.

Theorem 4 The following conditions are equivalent over IΣn+Exp.
(i) There exists a Σ0(Σn)-definable sparse relation.
(ii) There exists a Σn+1-definable one-to-one function which is bounded.
(iii) There exists a Σn+1-definable one-to-one function the range of which is the
interval { y ; y < t } for some t.

We omit the proofs of this theorem, but we give some remarks and hints. if
φ(x, y, v) ∈ Σ0(Σn) defines a one-to-one function bounded by z, then the relation
defined by

∃w∃y≤w∃v≤w (φ(x, y, v) & ∀y′<w∀v′<w¬φ(x, y′, v′))

is Σ0(Σn) and sparse with respect to any t > z. The proof of (ii) ⇒ (iii) is due
to Jeff Paris and is probably unpublished. Actually, the notion of sparse relation
is extracted from Paris’s proof, communicated privately, of (ii) ⇒ (iii).

5 Final remarks

There are several variants of the pigeon hole principle (PHP), the most common
being that there is no one-to-one function from t + 1-element set to t-element
set. The negation of the condition in (ii) of Theorem 4 says that there is no
Σn+1-definable one-to-one function from the entire universe to some t-element
set. This principle, i.e. the negation of the condition (ii) of Theorem 4, can
be called a weak PHP principle and denoted WPHP(Σn+1). I conjecture (and
have some ideas how to prove) that this principle is weaker than BΠn, i.e. that
IΣn+WPHP(Σn+1) does not prove BΠn. There may also be an open prob-
lem connected with WPHP(Σn+1): I do not know whether I∆0+WPHP(Σn+1)
proves IΣn.
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