Rosser sentences and Rosser logics

Vítězslav Švejdar

Department of Logic

Prague Gathering of Logicians January 26–27, 2017

Provability logic

Rosser logics

Gödel's sentence, Rosser's sentence

Other prominent self-referential constructions

Provability logic GL and its applications

Rosser logics

Gödel's sentence, Rosser's sentence

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

< @ >

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(x) of a theory *T* defines the set Thm(*T*) of all provable sentences: $T \vdash \varphi \Leftrightarrow \mathbb{N} \models Pr(\overline{\varphi})$.

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(x) of a theory *T* defines the set Thm(*T*) of all provable sentences: $T \vdash \varphi \Leftrightarrow \mathbb{N} \models Pr(\overline{\varphi})$. (ii) Σ -completeness: if σ is a Σ_1 -sentence valid in \mathbb{N} , then $T \vdash \sigma$.

< (P) >

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(*x*) of a theory *T* defines the set Thm(*T*) of all provable sentences: *T* ⊢ φ ⇔ ℕ ⊨ Pr(φ).
(ii) Σ-completeness: if σ is a Σ₁-sentence valid in ℕ, then *T* ⊢ σ.

Rosser's sentence

The provability predicate Pr(x) has the form $\exists y Proof(x, y)$, where $\exists y Proof(x, y) \in \Delta_1$ is a *proof predicate*, which defines the proof relation: *m* is a proof of φ iff $\mathbb{N} \models Proof(\overline{\varphi}, \overline{m})$.

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(*x*) of a theory *T* defines the set Thm(*T*) of all provable sentences: *T* ⊢ φ ⇔ ℕ ⊨ Pr(φ).
(ii) Σ-completeness: if σ is a Σ₁-sentence valid in ℕ, then *T* ⊢ σ.

Rosser's sentence

The provability predicate Pr(x) has the form $\exists y Proof(x, y)$, where $\exists y Proof(x, y) \in \Delta_1$ is a *proof predicate*, which defines the proof relation: *m* is a proof of φ iff $\mathbb{N} \models Proof(\overline{\varphi}, \overline{m})$. Then:

 $T \vdash \rho \equiv \exists y (\operatorname{Proof}(\overline{\neg \rho}, y) \& \forall v < y \neg \operatorname{Proof}(\overline{\rho}, v))$

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(*x*) of a theory *T* defines the set Thm(*T*) of all provable sentences: *T* ⊢ φ ⇔ ℕ ⊨ Pr(φ).
(ii) Σ-completeness: if σ is a Σ₁-sentence valid in ℕ, then *T* ⊢ σ.

Rosser's sentence

The provability predicate Pr(x) has the form $\exists y Proof(x, y)$, where $\exists y Proof(x, y) \in \Delta_1$ is a *proof predicate*, which defines the proof relation: *m* is a proof of φ iff $\mathbb{N} \models Proof(\overline{\varphi}, \overline{m})$. Then:

$$T \vdash \rho \equiv \exists y (\operatorname{Proof}(\overline{\neg \rho}, y) \& \forall v < y \neg \operatorname{Proof}(\overline{\rho}, v))$$

$$\mathcal{T} \vdash \rho \equiv \exists \mathbf{y} \operatorname{Proof}(\overline{\neg \rho}, \mathbf{y}) \preceq \exists \mathbf{y} \operatorname{Proof}(\overline{\rho}, \mathbf{y})$$

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(*x*) of a theory *T* defines the set Thm(*T*) of all provable sentences: *T* ⊢ φ ⇔ ℕ ⊨ Pr(φ).
(ii) Σ-completeness: if σ is a Σ₁-sentence valid in ℕ, then *T* ⊢ σ.

Rosser's sentence

The provability predicate Pr(x) has the form $\exists y Proof(x, y)$, where $\exists y Proof(x, y) \in \Delta_1$ is a *proof predicate*, which defines the proof relation: *m* is a proof of φ iff $\mathbb{N} \models Proof(\overline{\varphi}, \overline{m})$. Then:

$$T \vdash \rho \equiv \exists y (\operatorname{Proof}(\neg \overline{\rho}, y) \& \forall v < y \neg \operatorname{Proof}(\overline{\rho}, v))$$
$$T \vdash \rho \equiv \exists y \operatorname{Proof}(\neg \overline{\rho}, y) \preceq \exists y \operatorname{Proof}(\overline{\rho}, y)$$
$$T \vdash \rho \equiv \operatorname{Pr}(\neg \overline{\rho}) \preceq \operatorname{Pr}(\overline{\rho})$$

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(*x*) of a theory *T* defines the set Thm(*T*) of all provable sentences: *T* ⊢ φ ⇔ ℕ ⊨ Pr(φ).
(ii) Σ-completeness: if σ is a Σ₁-sentence valid in ℕ, then *T* ⊢ σ.

Rosser's sentence

The provability predicate Pr(x) has the form $\exists y Proof(x, y)$, where $\exists y Proof(x, y) \in \Delta_1$ is a *proof predicate*, which defines the proof relation: *m* is a proof of φ iff $\mathbb{N} \models Proof(\overline{\varphi}, \overline{m})$. Then:

$$T \vdash \rho \equiv \exists y (\operatorname{Proof}(\neg \overline{\rho}, y) \& \forall v < y \neg \operatorname{Proof}(\overline{\rho}, v))$$
$$T \vdash \rho \equiv \exists y \operatorname{Proof}(\neg \overline{\rho}, y) \preceq \exists y \operatorname{Proof}(\overline{\rho}, y)$$
$$T \vdash \rho \equiv \operatorname{Pr}(\neg \overline{\rho}) \preceq \operatorname{Pr}(\overline{\rho})$$

Are different ways to write the sentence.

Vítězslav Švejdar, Department of Logic

Gödel's sentence: $T \vdash \gamma \equiv \Pr(\overline{\neg \gamma})$.

Ingredients of independence proofs

(i) The provability predicate Pr(*x*) of a theory *T* defines the set Thm(*T*) of all provable sentences: *T* ⊢ φ ⇔ ℕ ⊨ Pr(φ).
(ii) Σ-completeness: if σ is a Σ₁-sentence valid in ℕ, then *T* ⊢ σ.

Rosser's sentence

The provability predicate Pr(x) has the form $\exists y Proof(x, y)$, where $\exists y Proof(x, y) \in \Delta_1$ is a *proof predicate*, which defines the proof relation: *m* is a proof of φ iff $\mathbb{N} \models Proof(\overline{\varphi}, \overline{m})$. Then:

$$T \vdash \rho \equiv \exists y (\operatorname{Proof}(\overline{\neg \rho}, y) \& \forall v < y \neg \operatorname{Proof}(\overline{\rho}, v))$$

$$T \vdash \rho \equiv \exists y \operatorname{Proof}(\overline{\neg \rho}, y) \preceq \exists y \operatorname{Proof}(\overline{\rho}, y)$$

 $T \vdash \rho \equiv \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}),$ (witness comparison symbols \preceq, \prec)

Are different ways to write the sentence.

Vítězslav Švejdar, Department of Logic

Independence of Rosser's sentence

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$.

< @ >

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\begin{array}{c} \mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho}) \text{ and} \\ T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}) \end{array}$ or $\begin{array}{c} \mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho}) \text{ and} \\ T \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho}). \end{array}$

< Ø →

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\begin{array}{c} \mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho}) \text{ and} \\ T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}) \end{array}$ or $\begin{array}{c} \mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho}) \text{ and} \\ T \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho}). \end{array}$ In the left case we have $\mathbb{N} \models \Pr(\overline{\neg \rho}), T \vdash \neg \rho \text{ and } T \vdash \rho.$

Rosser sentences and Rosser logics

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ and $T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ $\Gamma \vdash \overline{\rho}$, $T \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$. In the left case we have $\mathbb{N} \models \Pr(\overline{\neg \rho})$, $T \vdash \neg \rho$ and $T \vdash \rho$. In the right case we have $\mathbb{N} \models \Pr(\overline{\rho})$ and $T \vdash \rho$. Inside T, $\Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ yields $\neg(\Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}))$, which is $\neg \rho$.

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ and $T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ $\Gamma \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$. In the left case we have $\mathbb{N} \models \Pr(\overline{\neg \rho})$, $T \vdash \neg \rho$ and $T \vdash \rho$. In the right case we have $\mathbb{N} \models \Pr(\overline{\rho})$ and $T \vdash \rho$. Inside *T*, $\Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ yields $\neg(\Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}))$, which is $\neg \rho$.

A variant proof

If $T \vdash \rho$, then $T \vdash \operatorname{Proof}(\overline{\rho}, \overline{m})$ for some *m*, and $T \vdash \neg \operatorname{Proof}(\neg \overline{\rho}, \overline{n})$ for every *n*.

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ and $T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ $\Gamma \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$. In the left case we have $\mathbb{N} \models \Pr(\overline{\neg \rho})$, $T \vdash \neg \rho$ and $T \vdash \rho$. In the right case we have $\mathbb{N} \models \Pr(\overline{\rho})$ and $T \vdash \rho$. Inside *T*, $\Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ yields $\neg(\Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}))$, which is $\neg \rho$.

A variant proof

If $T \vdash \rho$, then $T \vdash \operatorname{Proof}(\overline{\rho}, \overline{m})$ for some *m*, and $T \vdash \operatorname{Proof}(\overline{\overline{\rho}}, \overline{\overline{m}})$ for every *n*. Then $T \vdash \operatorname{Pr}(\overline{\overline{\rho}}) \to \mathbb{R}$

 $T \vdash \neg \operatorname{Proof}(\overline{\neg \rho}, \overline{n})$ for every *n*. Then $T \vdash \operatorname{Pr}(\overline{\rho}) \prec \operatorname{Pr}(\overline{\neg \rho})$,

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ and $T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ $\Gamma \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$. In the left case we have $\mathbb{N} \models \Pr(\overline{\neg \rho})$, $T \vdash \neg \rho$ and $T \vdash \rho$. In the right case we have $\mathbb{N} \models \Pr(\overline{\neg \rho})$ and $T \vdash \rho$. Inside *T*, $\Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ yields $\neg(\Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}))$, which is $\neg \rho$.

A variant proof

If $T \vdash \rho$, then $T \vdash \operatorname{Proof}(\overline{\rho}, \overline{m})$ for some *m*, and $T \vdash \neg \operatorname{Proof}(\overline{\neg \rho}, \overline{n})$ for every *n*. Then $T \vdash \operatorname{Pr}(\overline{\rho}) \prec \operatorname{Pr}(\overline{\neg \rho})$, hence $T \vdash \neg(\operatorname{Pr}(\overline{\neg \rho}) \preceq \operatorname{Pr}(\overline{\rho}))$, which means $T \vdash \neg \rho$.

A canonical proof Let $T \vdash \rho$ or $T \vdash \neg \rho$. Then $\mathbb{N} \models \Pr(\overline{\rho})$ or $\mathbb{N} \models \Pr(\overline{\neg \rho})$. Thus $\mathbb{N} \models \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ and or $\mathbb{N} \models \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ and $T \vdash \Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho})$ $\Gamma \vdash \overline{\rho}$, $T \vdash \Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$. In the left case we have $\mathbb{N} \models \Pr(\overline{\neg \rho})$, $T \vdash \neg \rho$ and $T \vdash \rho$. In the right case we have $\mathbb{N} \models \Pr(\overline{\rho})$ and $T \vdash \rho$. Inside T, $\Pr(\overline{\rho}) \prec \Pr(\overline{\neg \rho})$ yields $\neg(\Pr(\overline{\neg \rho}) \preceq \Pr(\overline{\rho}))$, which is $\neg \rho$.

A variant proof

If $T \vdash \rho$, then $T \vdash \operatorname{Proof}(\overline{\rho}, \overline{m})$ for some *m*, and $T \vdash \neg \operatorname{Proof}(\neg \overline{\rho}, \overline{n})$ for every *n*. Then $T \vdash \operatorname{Pr}(\overline{\rho}) \prec \operatorname{Pr}(\neg \overline{\rho})$, hence $T \vdash \neg (\operatorname{Pr}(\neg \overline{\rho}) \preceq \operatorname{Pr}(\overline{\rho}))$, which means $T \vdash \neg \rho$. Similarly, if $T \vdash \neg \rho$, then $T \vdash \operatorname{Proof}(\neg \overline{\rho}, \overline{m})$ for some *m*, and $T \vdash \neg \operatorname{Proof}(\overline{\rho}, \overline{n})$ for every *n*. Then $T \vdash \rho$.

Aspects and remarks

 Comparison of Gödel's and Rosser's sentences: some parts of the above reasoning are, but some are not formalizable in the theory itself:

$$\begin{array}{l} T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\neg \gamma}), \\ T \nvDash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\gamma}), \\ T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\neg \rho}), \\ T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\rho}). \end{array}$$

Aspects and remarks

1. Comparison of Gödel's and Rosser's sentences: some parts of the above reasoning are, but some are not formalizable in the theory itself:

$$T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\neg \gamma),$$

 $T \nvDash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\gamma}),$
 $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\neg \overline{\rho}),$
 $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\rho}).$

Comparison of the canonical and the variant proof: the variant proof is less demanding on resources:
 ∑-completeness is applied to simpler sentences (Proof(..., n) or ¬Proof(..., n), but not to Pr(...)); some induction is involved in the canonical proof.

Aspects and remarks

1. Comparison of Gödel's and Rosser's sentences: some parts of the above reasoning are, but some are not formalizable in the theory itself:

$$T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\neg \gamma),$$

 $T \nvDash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\gamma}),$
 $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\neg \overline{\rho}),$
 $T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}(\overline{\rho}).$

- Comparison of the canonical and the variant proof: the variant proof is less demanding on resources:
 Σ-completeness is applied to simpler sentences (Proof(..., n) or ¬Proof(..., n), but not to Pr(...)); some induction is involved in the canonical proof.
- 3. Uniqueness: the self-reference guarantees the existence of certain sentence, but does not say that it is unique.

Some other self-referential sentences

Henkin's sentence: $T \vdash \kappa \equiv \Pr(\kappa)$.

Some other self-referential sentences

Henkin's sentence: $T \vdash \kappa \equiv Pr(\kappa)$.

Löb's sentence: $T \vdash \lambda \equiv Pr(\lambda) \rightarrow \kappa$.

< 67 ►

Henkin's sentence: $T \vdash \kappa \equiv Pr(\kappa)$.

- Löb's sentence: $T \vdash \lambda \equiv \Pr(\lambda) \rightarrow \kappa$.
- Hájek's sentence

Since GB is finitely axiomatizable, { φ ; GB \triangleright GB + φ } is *RE*.

Henkin's sentence: $T \vdash \kappa \equiv Pr(\kappa)$.

Löb's sentence: $T \vdash \lambda \equiv \Pr(\lambda) \rightarrow \kappa$.

Hájek's sentence

Since GB is finitely axiomatizable, { φ ; GB \triangleright GB + φ } is *RE*. Thus one can have χ s.t. $T \vdash \chi \equiv \text{Intp}_{\text{GB}}(\overline{\neg \chi}) \preceq \text{Intp}_{\text{GB}}(\overline{\chi})$.

Henkin's sentence: $T \vdash \kappa \equiv Pr(\kappa)$.

Löb's sentence: $T \vdash \lambda \equiv Pr(\lambda) \rightarrow \kappa$.

Hájek's sentence

Since GB is finitely axiomatizable, { φ ; GB \triangleright GB + φ } is *RE*. Thus one can have χ s.t. $T \vdash \chi \equiv \text{Intp}_{\text{GB}}(\overline{\neg \chi}) \preceq \text{Intp}_{\text{GB}}(\overline{\chi})$. Then GB \nvDash GB + χ and GB \nvDash GB + $\neg \chi$.

Henkin's sentence: $T \vdash \kappa \equiv Pr(\kappa)$.

Löb's sentence:
$$T \vdash \lambda \equiv \Pr(\lambda) \rightarrow \kappa$$
.

Hájek's sentence

Since GB is finitely axiomatizable, { φ ; GB \triangleright GB + φ } is *RE*. Thus one can have χ s.t. $T \vdash \chi \equiv \text{Intp}_{\text{GB}}(\overline{\neg \chi}) \preceq \text{Intp}_{\text{GB}}(\overline{\chi})$. Then GB $\not\vDash$ GB + χ and GB $\not\nvDash$ GB + $\neg \chi$.

Mostowski's flexible formula

is a formula $\varphi(x)$ such that $T \cup \{\pm \varphi(\overline{0}), \pm \varphi(\overline{1}), \pm \varphi(\overline{2}), \dots\}$ is consistent for every choice of pluses and minuses.

Henkin's sentence: $T \vdash \kappa \equiv Pr(\kappa)$.

Löb's sentence:
$$T \vdash \lambda \equiv \Pr(\lambda) \rightarrow \kappa$$
.

Hájek's sentence

Since GB is finitely axiomatizable, { φ ; GB \triangleright GB + φ } is *RE*. Thus one can have χ s.t. $T \vdash \chi \equiv \text{Intp}_{\text{GB}}(\overline{\neg \chi}) \preceq \text{Intp}_{\text{GB}}(\overline{\chi})$. Then GB \nvDash GB + χ and GB \nvDash GB + $\neg \chi$.

Mostowski's flexible formula

is a formula $\varphi(x)$ such that $T \cup \{\pm \varphi(\overline{0}), \pm \varphi(\overline{1}), \pm \varphi(\overline{2}), \dots\}$ is consistent for every choice of pluses and minuses.

Hájková-Hájek

 $\mathsf{PA} \vdash \mu \equiv \forall y(\mathsf{Con}(\mathsf{PA} \upharpoonright y + \overline{\mu}) \rightarrow \neg \alpha(\overline{\mu}, y))$, where $\mathsf{PA} \upharpoonright y$ are axioms of PA less than y, and $\alpha(x, y) \in \Delta_0$ defines a set A of consistent sentences. Then $\mu \notin A$, but $\mathsf{PA} \triangleright \mathsf{PA} + \mu$.

Self-referential sentences (continued)

Embedding a Kripke model to PA (Solovay) Let $k = \langle W, R \rangle$, $W = \{1, ..., n\}$. Put $S(i) = \{j; i R j\}$. Example:

Then consistent sentences $\lambda_1, \ldots, \lambda_n$ such that

 $\mathsf{PA} \vdash \lambda_i \rightarrow \bigwedge_{j \in S(i)} \neg \operatorname{Pr}(\overline{\neg \lambda_j})$ and $\mathsf{PA} \vdash \lambda_i \rightarrow \operatorname{Pr}(\overline{\bigvee_{j \in S(i)} \lambda_j})$. and furthermore $\lambda_i \rightarrow \neg \lambda_j$ for $i \neq j$ are constructed using *plural but finite* self-reference (solvability of *n* equations for *n* unknown sentences).

Self-referential sentences (continued)

Embedding a Kripke model to PA (Solovay) Let $k = \langle W, R \rangle$, $W = \{1, ..., n\}$. Put $S(i) = \{j; i R j\}$. Example:

Then consistent sentences $\lambda_1, \ldots, \lambda_n$ such that

$$\mathsf{PA} \vdash \lambda_i \to \bigwedge_{j \in S(i)} \neg \operatorname{Pr}(\overline{\neg \lambda_j}) \text{ and } \mathsf{PA} \vdash \lambda_i \to \operatorname{Pr}(\overline{\bigvee_{j \in S(i)} \lambda_j}).$$

and furthermore $\lambda_i \rightarrow \neg \lambda_j$ for $i \neq j$ are constructed using *plural but finite* self-reference (solvability of *n* equations for *n* unknown sentences).

A self-referential equation $\vdash \varphi \equiv \psi(\overline{\varphi})$ is *Gödelian* if ψ is built up using connectives and Pr only.

Provability logic GL

is a modal propositional logic with axioms and rules as follows:

- A1: all propositional tautologies,
- $\mathsf{A2:} \ \Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B),$
- A3: $\Box A \rightarrow \Box \Box A$,

$$\mathsf{A4:} \ \Box(\Box A \rightarrow A) \rightarrow \Box A,$$

MP: $A \rightarrow B, A / B$, Nec: $A / \Box A$.

Arithmetic semantics of GL

Arithmetic valuation v is a function from modal formulas to sentences of arithmetic that preserves logical connectives and translates \Box to Pr (atoms are sent to any sentences). A formula A is a PA-tautology if PA $\vdash v(A)$ for every translation v.

Provability logic GL

is a modal propositional logic with axioms and rules as follows:

- A1: all propositional tautologies,
- $\mathsf{A2:} \ \Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B),$
- $\mathsf{A3:}\ \Box \mathsf{A} \to \Box \Box \mathsf{A},$

$$\mathsf{A4:} \ \Box(\Box A \rightarrow A) \rightarrow \Box A,$$

MP: $A \rightarrow B, A / B$, Nec: $A / \Box A$.

Arithmetic semantics of GL

Arithmetic valuation v is a function from modal formulas to sentences of arithmetic that preserves logical connectives and translates \Box to Pr (atoms are sent to any sentences). A formula A is a PA-tautology if PA $\vdash v(A)$ for every translation v.

Examples

 $\Box p \rightarrow p$ is not a PA-tautology: for Gödel's sentence γ we have PA $\not\vdash \Pr(\neg \gamma) \rightarrow \neg \gamma$. A tautology: $\neg \Box \bot \rightarrow \neg \Box \neg \Box \bot$.

Vítězslav Švejdar, Department of Logic

1. Two completeness theorems: Kripke completeness w.r.t. finite transitive irreflexive frames, arithmetic completeness w.r.t. the semantics given above.

- 1. Two completeness theorems: Kripke completeness w.r.t. finite transitive irreflexive frames, arithmetic completeness w.r.t. the semantics given above.
- 2. Every Gödelian equation has exactly one solution (up to provable equivalence).

- 1. Two completeness theorems: Kripke completeness w.r.t. finite transitive irreflexive frames, arithmetic completeness w.r.t. the semantics given above.
- 2. Every Gödelian equation has exactly one solution (up to provable equivalence).
- 3. Explicit computability of the solutions:

if
$$\mathsf{PA} \vdash \gamma \equiv \operatorname{Pr}(\overline{\neg \gamma})$$
, then $\mathsf{PA} \vdash \gamma \equiv \neg \operatorname{Con}(\mathsf{PA})$;
if $\mathsf{PA} \vdash \kappa \equiv \operatorname{Pr}(\overline{\kappa})$, then $\mathsf{PA} \vdash \gamma \equiv \mathsf{0} = \mathsf{0}$;
if $\mathsf{PA} \vdash \lambda \equiv \operatorname{Pr}(\overline{\lambda}) \to \kappa$, then $\mathsf{PA} \vdash \lambda \equiv \operatorname{Pr}(\overline{\kappa}) \to \kappa$
(can be verified by proving $\Box q \to q \equiv \Box(\Box q \to q) \to q$
in GL); etc.

- 1. Two completeness theorems: Kripke completeness w.r.t. finite transitive irreflexive frames, arithmetic completeness w.r.t. the semantics given above.
- 2. Every Gödelian equation has exactly one solution (up to provable equivalence).
- 3. Explicit computability of the solutions: if $\mathsf{PA} \vdash \gamma \equiv \mathsf{Pr}(\neg \gamma)$, then $\mathsf{PA} \vdash \gamma \equiv \neg \mathsf{Con}(\mathsf{PA})$; if $\mathsf{PA} \vdash \kappa \equiv \mathsf{Pr}(\overline{\kappa})$, then $\mathsf{PA} \vdash \gamma \equiv \mathsf{0} = \mathsf{0}$; if $\mathsf{PA} \vdash \lambda \equiv \mathsf{Pr}(\overline{\lambda}) \to \kappa$, then $\mathsf{PA} \vdash \lambda \equiv \mathsf{Pr}(\overline{\kappa}) \to \kappa$ (can be verified by proving $\Box q \to q \equiv \Box(\Box q \to q) \to q$ in GL); etc.
- 4. Impossibility of symmetrically independent Gödelian sentence: no solution φ of a Gödelian equation
 ⊢ φ ≡ ψ(φ) satisfies PA ⊢ Con(PA) → ¬Pr(φ) & ¬Pr(¬φ).

The logic R of Guaspari and Solovay

Besides \Box , we have "binary modalities" \leq, \prec in the modal language. These are applicable only to formulas starting with \Box . Thus $\Box \Box \bot \preceq \Box p$ is an example formula.

< Ø →

The logic R of Guaspari and Solovay

Besides \Box , we have "binary modalities" \leq, \prec in the modal language. These are applicable only to formulas starting with \Box . Thus $\Box \Box \bot \preceq \Box p$ is an example formula. The theory R^- is obtained by adding to GL the axioms about witness comparison:

B1:
$$\Box A \preceq \Box B \rightarrow \Box A$$
,

 $\mathsf{B2:} \ \Box A \preceq \Box B \And \Box B \preceq \Box C \rightarrow \Box A \preceq \Box C,$

B3: $\Box A \prec \Box B \equiv \Box A \preceq \Box B \& \neg (\Box B \preceq \Box A),$

 $\mathsf{B4:} \ \Box A \lor \Box B \to \Box A \preceq \Box B \lor \Box B \prec \Box A,$

 $\mathsf{P} \colon \Box A \preceq \Box B \to \Box (\Box A \preceq \Box B), \qquad \Box A \prec \Box B \to \Box (\Box A \prec \Box B).$

The logic R of Guaspari and Solovay

Besides \Box , we have "binary modalities" \leq, \prec in the modal language. These are applicable only to formulas starting with \Box . Thus $\Box\Box\bot \leq \Box p$ is an example formula. The theory R^- is obtained by adding to GL the axioms about witness comparison:

B1:
$$\Box A \preceq \Box B \rightarrow \Box A$$
,

 $B2: \Box A \preceq \Box B \& \Box B \preceq \Box C \to \Box A \preceq \Box C,$

B3: $\Box A \prec \Box B \equiv \Box A \preceq \Box B \& \neg (\Box B \preceq \Box A),$

 $\mathsf{B4:} \ \Box A \lor \Box B \to \Box A \preceq \Box B \lor \Box B \prec \Box A,$

 $\mathsf{P}: \Box A \preceq \Box B \to \Box (\Box A \preceq \Box B), \qquad \Box A \prec \Box B \to \Box (\Box A \prec \Box B).$

The theory R has the additional rule $\Box A / A$.

The logic R of Guaspari and Solovay

Besides \Box , we have "binary modalities" \leq, \prec in the modal language. These are applicable only to formulas starting with \Box . Thus $\Box \Box \bot \preceq \Box p$ is an example formula. The theory R^- is obtained by adding to GL the axioms about witness comparison:

$$\mathsf{B1:} \ \Box \mathsf{A} \preceq \Box \mathsf{B} \rightarrow \Box \mathsf{A},$$

 $B2: \Box A \preceq \Box B \& \Box B \preceq \Box C \to \Box A \preceq \Box C,$

B3: $\Box A \prec \Box B \equiv \Box A \preceq \Box B \& \neg (\Box B \preceq \Box A),$

 $\mathsf{B4:} \ \Box A \lor \Box B \to \Box A \preceq \Box B \lor \Box B \prec \Box A,$

 $\mathsf{P} \colon \Box A \preceq \Box B \to \Box (\Box A \preceq \Box B), \qquad \Box A \prec \Box B \to \Box (\Box A \prec \Box B).$

The theory R has the additional rule $\Box A / A$. Kripke semantics: formulas with \leq, \prec as the outermost symbol are treated as atoms (with the restrictions given by the axioms).

The logic R (continued)

Arithmetic semantics: the modalities \leq, \prec translate to \leq, \prec : $v(\Box A \leq \Box B) = \Pr(\overline{v(A)}) \leq \Pr(\overline{v(B)}),$ $v(\Box A \prec \Box B) = \Pr(v(A)) \prec \Pr(v(B)).$

However, the proof predicate and the corresponding provability predicate are let to vary.

The logic R (continued)

Arithmetic semantics: the modalities \leq, \prec translate to \leq, \prec : $v(\Box A \leq \Box B) = \Pr(\overline{v(A)}) \leq \Pr(\overline{v(B)}),$ $v(\Box A \prec \Box B) = \Pr(v(A)) \prec \Pr(v(B)).$

However, the proof predicate and the corresponding provability predicate are let to vary.

Completeness theorem

If $R \not\vdash A$, then there exists a valuation v (i.e. a choice of a proof predicate and values of atoms) such that $PA \not\vdash v(A)$.

Some applications of the logic R

1. R can prove Rosser's theorem in the form $\Box(\rho \equiv \Box \neg \rho \preceq \Box \rho) \rightarrow (\neg \Box \bot \rightarrow (\neg \Box \rho \& \neg \Box \neg \rho)).$

Some applications of the logic R

- 1. R can prove Rosser's theorem in the form $\Box(\rho \equiv \Box \neg p \preceq \Box p) \rightarrow (\neg \Box \bot \rightarrow (\neg \Box p \& \neg \Box \neg p)).$
- The Solovay's plural self-reference construction (concerning completeness of GL) can be formalized in GL (I believe).

Some applications of the logic R

- 1. R can prove Rosser's theorem in the form $\Box(\rho \equiv \Box \neg \rho \preceq \Box \rho) \rightarrow (\neg \Box \bot \rightarrow (\neg \Box \rho \& \neg \Box \neg \rho)).$
- The Solovay's plural self-reference construction (concerning completeness of GL) can be formalized in GL (I believe).
- 3. Consider the formula

 $A = \Box(p \equiv \Box \neg p \preceq \Box p) \& \Box(q \equiv \Box \neg q \preceq \Box q) \rightarrow \Box(p \equiv q).$ Use Kripke semantics to show that this formula is not provable. Take the arithmetic counterexemple, i.e. sentences v(p) and v(q) and a proof predicate Pr such that $\mathbb{N} \models \Pr(\overline{p \equiv \Pr(\neg v(p))} \preceq \Pr(\overline{v(p)})),$ $\mathbb{N} \models \Pr(\overline{q \equiv \Pr(\neg v(q))} \preceq \Pr(\overline{v(q)})),$ but $\mathbb{N} \nvDash \Pr(v(p) \equiv v(q)).$ Then v(p) and v(q) are non-equivalent.

Look at the sentence of Hájková and Hájek: a number y such that $\neg \text{Con}(\text{PA} \upharpoonright y + \overline{\mu})$ can be understood as a generalized proof of $\neg \mu$, and the formula $\neg \text{Con}(\text{PA} \upharpoonright y + x)$ can be seen as a sort of proof predicate.

Look at the sentence of Hájková and Hájek: a number *y* such that $\neg \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\mu})$ can be understood as a generalized proof of $\neg \mu$, and the formula $\neg \text{Con}(\mathsf{PA} \upharpoonright y + x)$ can be seen as a sort of proof predicate. Then a sentence satisfying $\mathsf{PA} \vdash \varphi \equiv \exists y (\neg \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\varphi}) \& \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\varphi}))$ is in fact a Rosser's sentence.

Look at the sentence of Hájková and Hájek: a number *y* such that $\neg \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\mu})$ can be understood as a generalized proof of $\neg \mu$, and the formula $\neg \text{Con}(\mathsf{PA} \upharpoonright y + x)$ can be seen as a sort of proof predicate. Then a sentence satisfying $\mathsf{PA} \vdash \varphi \equiv \exists y (\neg \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\varphi}) \& \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\varphi}))$ is in fact a Rosser's sentence. The logic Z has the axiom and the rule

 $\mathsf{W}: \ \Box \mathsf{A} \to \ \Box (\neg \mathsf{B} \to \Box \mathsf{A} \prec \Box \mathsf{B}), \qquad \mathsf{A} / \ \neg \mathsf{B} \to \ \Box \mathsf{A} \prec \Box \mathsf{B}$

instead of the axiom P and the rule $\Box A / A$ of the theory R.

Look at the sentence of Hájková and Hájek: a number *y* such that $\neg \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\mu})$ can be understood as a generalized proof of $\neg \mu$, and the formula $\neg \text{Con}(\mathsf{PA} \upharpoonright y + x)$ can be seen as a sort of proof predicate. Then a sentence satisfying $\mathsf{PA} \vdash \varphi \equiv \exists y (\neg \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\varphi}) \& \text{Con}(\mathsf{PA} \upharpoonright y + \overline{\varphi}))$ is in fact a Rosser's sentence.

The logic Z has the axiom and the rule

 $\mathsf{W}: \Box \mathsf{A} \to \Box (\neg \mathsf{B} \to \Box \mathsf{A} \prec \Box \mathsf{B}), \qquad \mathsf{A} / \neg \mathsf{B} \to \Box \mathsf{A} \prec \Box \mathsf{B}$

instead of the axiom P and the rule $\Box A / A$ of the theory R. This logic is arithmetically sound with respect to *all* proof predicates, i.e. standard in the sense of Guaspari and Solovay, or non-standard (like in the sentence of Hájková and Hájek).

Look at the sentence of Hájková and Hájek: a number *y* such that $\neg \text{Con}(\text{PA} \upharpoonright y + \overline{\mu})$ can be understood as a generalized proof of $\neg \mu$, and the formula $\neg \text{Con}(\text{PA} \upharpoonright y + x)$ can be seen as a sort of proof predicate. Then a sentence satisfying $\text{PA} \vdash \varphi \equiv \exists y (\neg \text{Con}(\text{PA} \upharpoonright y + \overline{\varphi}) \& \text{Con}(\text{PA} \upharpoonright y + \overline{\varphi}))$ is in fact a Rosser's sentence.

The logic Z has the axiom and the rule

 $\mathsf{W}: \ \Box \mathsf{A} \to \ \Box (\neg \mathsf{B} \to \Box \mathsf{A} \prec \Box \mathsf{B}), \qquad \mathsf{A} / \ \neg \mathsf{B} \to \ \Box \mathsf{A} \prec \Box \mathsf{B}$

instead of the axiom P and the rule $\Box A / A$ of the theory R. This logic is arithmetically sound with respect to *all* proof predicates, i.e. standard in the sense of Guaspari and Solovay, or non-standard (like in the sentence of Hájková and Hájek). Example formula: $\Box \Box \bot \rightarrow \Box \Box \bot \prec \Box \bot$.