Do We Need Recursion?

Vitézslav Svejdar
Charles University in Prague

Appeared in Igor Sedlar and Martin Blicha eds., The Logica

Yearbook 2019, pp. 193204, College Publications,
London, 2020.

Abstract

The operation of primitive recursion, and recursion in a more general sense,
is undoubtedly a useful tool. However, we will explain that in two situa-
tion where we work with it, namely in the definition of partial recursive
functions and in logic when defining the basic syntactic notions, its use
can be avoided. We will also explain why one would want to do so.

1 What is recursion, where do we meet it?

Recursion in a narrow sense is an operation with multivariable functions whose
arguments are natural numbers. Let z denote the k-tuple 21, .., zx (where the
number k of variables does not have to be indicated), and let]?(:107 z) denote the
code (f(0,z2),.., f(x —1,z)) of the sequence f(0,z),..,f(x — 1,z) under some
suitable coding of finite sequences. If (1), (2) or (3) holds for any choice of
arguments:

fO)=a, flz+1)=nh(f(z),2), (1)
f(0,2) = g(2), fz +A17§) = h(f(z,2),2,2), (2)
f(x,g) = h(f(x’§)7§>7 (3)

then in the cases (1) and (2) we say that f is derived from a number a and a
function A or from two functions g and h by primitive recursion, while in the
case (3) we say that f is derived from h by course-of-values recursion. All func-
tions in (1)—(3) may be partial, i.e., undefined for some arguments. Nevertheless,
if his (both g and h are) total (everywhere defined), then the derived function f
must be total. It does not matter that « does not appear in (3) as a variable
of h because it can be determined as the length of the sequence encoded in the

http://www.collegepublications.co.uk/logica/?00033
http://www.collegepublications.co.uk/logica/?00033

2 V. Svejdar

number (f(0,z2),.., f(z —1,z)). Course-of-values recursion seems more power-
ful, but it can be simulated by (derived from) primitive recursion of the form
(1) and (2). Therefore, it can be considered a variant of primitive recursion.

Primitive recursion appears in very basic definitions: a function is partial
recursive if it can be derived from the initial functions using composition, min-
imization and primitive recursion; it is primitive recursive if it can be derived
from the same initial functions using composition and primitive recursion only.
Since RE sets (recursively enumerable sets) are usually defined as the domains of
partial recursive functions, the operation of primitive recursion is in fact part of
the definition of the arithmetical hierarchy. Primitive recursion is also a useful
tool in some proofs. For example, if g is a recursive function with an infinite
range, then the equation f(z) = g(uv(g(v) ¢ {f(0),.., f(x —1)})) where pov(..)
denotes the minimization operation (that is, the search for the first v satisfying
the condition in the parentheses) is a derivation by course-of-values recursion of
a one-to-one function with the same range. This argument in fact shows that
any infinite RE set is the range of some one-to-one recursive function.

Recursion in a broader sense is used in programming languages: a procedure
can be written so that it processes its parameter by calling itself, perhaps several
times, with parameters that are simpler in some sense. The parameters do
not have to be natural numbers. Also in logic we have several definitions that
are described as recursive. One example is this: an expression is a term of a
language L if it is a variable, or if it is a constant, or if it has the form F'(¢1,..,t,)
where F' € L is an n-ary function symbol and ¢q,..,t, are terms. This and
other syntactic definitions deal with strings rather that numbers, and they are
thus examples of recursion in a broader sense. However, if syntactic objects are
identified with natural numbers via some coding of syntax, all these definitions
appear to be applications of course-of-values recursion. Then, the set of all terms,
the set of all formulas, etc. are primitive recursive sets.

When dealing with metamathematics of Peano arithmetic PA and with in-
completeness phenomena, one may need (in fact, does need) arithmetic formulas
that define RE sets. When dealing with Godel’s second incompleteness theorem,
one (of course) needs logical syntax formalized inside Peano arithmetic. In both
situations primitive recursion poses a problem because in the arithmetic language
(consisting of the binary operation symbols + and -, the order symbols < and <,
the constant 0 and the successor function S) there is nothing that would directly
correspond to it. One can use existential quantifiers and describe a function that
is derived by composition (from functions that can be described), and one can
use the least number principle to describe a function that is derived by minimiza-
tion. However, the dynamic nature of primitive recursion is problematic for the
language of a formal theory where we primarily have static descriptions. S. Fe-
ferman in his paper [Fef60], which for decades was the most important source of
information about Gdédel’s theorems and about interpretability, introduces the
notion of PR-formulas. Its purpose is to have a class of formulas that define and

Do We Need Recursion? 3

formalize exactly the primitive recursive conditions. Nevertheless, PR-formulas
are more an ad hoc technical solution than wisely chosen notion that can be
further studied. The formalization of syntax itself, and the complexity of the
corresponding formulas, cannot be easily learnt from that paper.

While a brief answer to the question whether we need recursion is yes, we
will explain that its use in the basic definitions and when formalizing syntax
can be replaced by the use of Ay conditions. The class of all Ay conditions is
somewhat smaller than the class of all primitive recursive conditions, but it is
still quite expressive. It does have a counterpart in the formalized arithmetic,
namely the class of Ag-formulas. Defining partial recursive functions without
recursion may sound paradoxical, and showing that the defined concept remains
unchanged does require some effort, but the fact that all RE sets are definable
in the structure N of natural numbers then comes practically for free.

All claims and results of this paper are given in more detail in [Sve20]. Prac-
tically all ideas concerning formalized syntax are due to Pavel Pudlak: they
are either contained in [HP93] or were communicated otherwise. We just add
some computations and offer detailed implementation. Defining partial recursive
functions without primitive recursion is described in [Odi89].

2 Bounded conditions and bounded formulas

(Multivariable) polynomials in the domain N of natural numbers are functions
like [z,y] — 22% + 3zy + 1, obtained from variables and constants by (repeated
use of) addition and multiplication. A bounded condition (or Ag condition) is
a condition obtained from equalities of polynomials using Boolean operations
and the bounded quantifiers Yo<f(z), Iv<f(z), Vo< f(z) and Fv< f(z) where
f is a polynomial not dependent on v. Bounded quantifiers have the obvious
meaning: Vo< f(z) A(v,z) is a shorthand for Vo(v < f(z) = A(v,z)) ete.
Notice that they interact the expected way with negation: —Vo<f(z)A(v,z)
and Jv< f(z) - A(v, z) are equivalent, and similar equivalences hold for the re-
maining cases. Since one can see a for-loop behind each bounded quantifier in a
Ap condition A(z), it is easy to imagine a program (written in any reasonable
programming language) that decides A.

An example of a Ay condition is the divisibility relation: z is a divisor of y
(written as z | y) if v<y(v -z = y). Also being a prime is a Ay condition
because z is a prime if x > 1 & Yo<a (v | z = v = 1). Euclidean division,
i.e., the two functions Mod and Div that yield the remainder and the quotient
of dividing = by z, have Ay graphs. In the case of the function Div the graph
is{[y,z,2]; Ir<z(z=y-z+7r) V (=0 & y =0) }, where the purpose of the
clause (z =0 & y = 0) is to have a total function, which yields some (unimpor-
tant) output even when the divisor z is zero. The fact that y = Mod(z, 2) is a
Ag condition is proved similarly.

4 V. Svejdar

Other examples are the graph { [y, z] ; y = 2* } of the function x — 2% and
the range Pwr of this function, i.e., the set {1,2,4,8,...} of all powers of two.
Since Pwr = { y; Jr<y(y = 2%) }, the set (property) Pwr is obtained from the
condition y = 2% using a bounded quantifier, and thus if this condition is Ay, then
also Pwr € Ag. This is a sound but misleading observation. The problem about
the condition y = 2% is that it is an equality, but not an equality of polynomials.
Thus the fact that it is Ay is a nontrivial result. For a proof see [Ben62] or
[Pud83]. Below we will sketch a yet another proof. A direct proof that Pwr € A
is here: z is a power of two if and only if Vo<z(v|z — v=1V 2| v).

If r is a power of two, then Div(Mod(u,2r),r) yields the bit in the binary
expansion of u that corresponds to the power r. Therefore, using Euclidean di-
vision and employing powers of two as pointers, we can speak (in the Aj speach)
about binary expansions of numbers. We can, for example, say that the bits
corresponding to powers r; < ro are positive while all bits between them are
negative. We cannot (yet) say that d is the a-th digit (because that would
involve saying that r = 2%). For our proof-sketch that not only y = 2*, but
also y = z* are 4y conditions, consider the following “data structure” consisting
of three numbers u, v and w:

T

A~
) 1101 0000000110 00011 01 U
110000101001111010011 1011011001 11011 11 v (4)
1 000000000000000000001 0000000001 00001 01 w
0)
T2 1

The number w acts as a ruler: the positive bits in its expansion are markers that
divide the numbers u and v into items. The separation into items is also indicated
by little gaps between digits. The items in u (looking from the right) are the
numbers 1, 3, 6 and 13; their binary representations are 1, 11, 110, 1101. The
items in v are 3, 27 (whose expansion is 11011), etc. Let ExpW (y, z, 2, u, v, w)
be a shorthand for the condition describing the data structure of which (4) is
an instance. The condition says “the lowest item in w is 1; the lowest item in v
is z and z > 1; whenever an item in u is ¢t and the corresponding item in v is e,
then the next items in v and v are either 2¢ and €2 or 2t + 1 and ze?; the last
(highest) items in w and v are z and y”. The condition ExpW (y, z, z, u, v, w)
is Ag. If it holds, then u, v and w witness (for z # 0 and z > 1) that y = 2%.
The condition:

FuIFvIwExpW (y, , 2, u, v, w) V

Ve=0&y=1)V (2£0& 2<2 & y=2) ®)

deals also with the marginal cases where x = 0 or z < 1, and it defines the
graph of the function [z, z] — 2. It can be verified that if u, v and w are such

Do We Need Recursion? 5

that ExpW (y, z, z,u, v, w), then they do not exceed y3. This means that the
three quantifiers in (5) can be written as Ju<y®, Jv<y3 and Jw<y>. Thus
indeed, the condition y = 2% is Ay.

The above proof is different from that in [Pud83]. But its main idea (to
achieve an efficient data structure by using the recursive conditions z2¢ = (2*)?
and 22! = 2(2%)? rather than the condition 2!*! = z(2%)) is also due to Pavel
Pudlék.

A yet another useful function is the function z — NPB(z) that yields the
number of positive bits in the binary expansion of a number x. To show that it
has a Ag graph, we again design data structure that witnesses that y = NPB(x).
The data structure now consists of a single number w whose binary expansion
is seen as a concatenation of (binary expansions of) numbers S(w,r,4,) that
satisfy S(w,r, i+ 1,7) = S(w,r,i,25) + S(w,r,i,25 + 1) for every 0 < i < r
and 0 < j < 2"7%~!, the number r is a power of two not smaller than the total
number of bits in z, and S(w, r,0, j) for each j < 2" is the j-th digit of x (looking
from the right). We call w summation tree for x. The numbers S(w,r,1,7) for
i <rand j < 2"7% can be seen as labels of nodes in a binary tree: there are 2"
leaves labeled by the bits in x, each non-leaf is labeled by the sum of the labels
of the two children, and the root is labeled by S(w,r,,0), which is the result of
the whole computation. For example, one can check that the binary expansion
of the number & = 24 308 687 consists of 25 bits. Then the least possible 7 is 5
and the summation tree w corresponding to x and this r is:

T
00000001011100101110101111001111
00000001011000011001011010001010
000001011001011011010100
0001010001100110

00101 01100

10001

T W N = O

where w is split across six lines (with more significant bits in lower lines). Again,
little gaps between digits (and also line breaks) indicate the items S(w,r,1,7)
of w. There are i+1 digits reserved for S(w, r, i, j); the leading zeros in lines i < r
are (must be) given, but the leading zero in line 5 is not given because it would
be a leading zero in the entire number w. The binary expansion of S(w,r,r,0)
is 10001; indeed, there are 17 positive bits in x. For a full proof that “w is a
summation tree for " is a Ay condition see [Sve20]. It is clear already now
that the proof uses the fact that y = 2% is a Ay condition. It can be proved
that for every x there exists a summation tree w such that w < %, from which
it follows that y = NPB(z) is a Ay condition. The key idea of the proof of
this fact is natural: if the positive bits in = are counted not one by one, but

6 V. Svejdar

by dividing (repeatedly) the binary expansion of z into halves, then the data
structure corresponding to the computation is efficient in the sense that it is
bounded by a polynomial in x. It should be emphasized that, while we use some
ideas from computational complexity and the word ‘polynomial’ appears several
times in this paper, the class of all Ay conditions is different from the classes
NP and P studied in computational complexity.

Knowing that Ay conditions express many useful properties and relations,
we are ready to explain their relationship to computability theory and to arith-
metic. As already mentioned, partial recursive functions are usually defined as
the functions that can be derived from the initial functions by primitive recursion,
composition and minimization where the initial functions are z +— 0, x — z 4 1
and [z1,..,x] — x; for 1 < j < k. It can be shown that if the list of the initial
functions is extended by adding addition and multiplication and the function e
where e(z,y) = 1 if x = y and e(z,y) = 0 otherwise, then every partial recursive
function can be derived without using primitive recursion. This fact is shown in
[Odi89] (with citations to Godel and Kleene). Working with this definition, one
can show that the graph (and thus also the domain and the range) of every par-
tial recursive function is a projection of (i.e., a condition obtained by existential
quantification from) some Aj relation. On the other hand, it is easy to prove
(not employing primitive recursion) that every projection of a Ay relation is the
domain of some partial recursive function. From these considerations it follows
that the basic notions of computability theory, partial recursive functions and
RE sets, can be defined without primitive recursion (and actually also without
using the functions [z, z] — 2® and NPB; these are not needed until the next
section).

From now on we deal with connections to formal arithmetic. We reserve the
letters x, y, etc. for variables in (arithmetic) formulas. Out of many structures,
we in fact only need the standard model N = (N, +,-,0,S, <, <) of Peano arith-
metic PA. We use n, k, etc. to denote its elements. We keep in mind that PA is
incomplete and has many other models. For n € N, the n-th numeral 7 is the
closed term S(S..(0)..) containing exactly n occurrences of the successor sym-
bol S. Recall that a formula ¢(x) defines a set A C N* in N if the equivalence
A(ny,..,n;) & N E o(n,..,7g) holds for every k-tuple [nq,..,n]. We intro-
duce bounded quantifiers: these are quantifiers of the form Vo <t(x), Jv<t(z),
Vo<t(z) and Ju<t(z) where t(x) is an arithmetic term not containing v. We
define bounded formulas, or Aqg-formulas, as formulas in which all quantifiers are
bounded. Notice that we use ‘A’ at the formal level and the italic ‘A’ at the meta
level. The two notions correspond; the sets definable by Ag-formulas are exactly
the Ag relations, which can be written as follows: AY = Ay. This is so because
terms in the arithmetic language correspond to multivariable polynomials.

Let Pwr(x) be the formula Vo<z (v |z — v =1 V 2| v) where v | x is the
formula Ju<v (u-v = x). The formula Pwr(z) is bounded and defines the set Pwr
of all power of two. All our remaining considerations about Ay conditions can be

Do We Need Recursion? 7

reproduced at the formal level. Thus we can introduce a bounded formula saying
that the number y is the number of positive bits in 2 and write it as y = NPB(z),
and we can introduce a bounded formula y = 2% that describes exponentiation.
We also have bounded formulas y = Mod(z, z) and y = Div(z, z) that describe
Euclidean division. Notice that we use the single arrow — for implication as a
symbol in formulas, while the double arrow = was used at the meta level as a
shorthand for implication in our speech. We also use the sans-serif font in the
shorthands for formulas and also in informal readings of formulas (one should
always imagine a formula behind the sans-serif font). We do not systematically
invent double symbols: we write the connectives &, V and —, the divisibility
symbol | and equations like y = z* the same way at both the formal and the
meta level. We do not add new function symbols to the arithmetic language;
equations like y = Mod(x, z) are shorthands for formulas, not equalities of terms.

As already noted, the formula Pwr(z) defines the set of all powers of two,
which means that any » is in Pwr if and only if N = Pwr(%). The same holds
for the remaining formulas. Thus, for example, N = m = NPB(n) if and only
if m = NPB(n), i.e. if and only if the number of positive bits in the binary
expansion of n is exactly m. However, our Ag-formulas not only define the sets
that they are supposed to define. They formalize the corresponding notions in
Peano arithmetic. That is, if they are accepted as definitions of the notions
inside PA, then PA can prove the expected properties of the notions. “Expected
properties” is a vague concept, but in most cases it is clear what to expect. PA
can prove that every divisor of a power of two is a power of two and that the
product of any two powers of two is again a power of two. As to the exponential
function, PA F VaVyVz(z"t¥ = 2% - z2¥) and also PA F VaVyVz((z¥)* = 2¥7).
The function NPB has the following summation property: if s is a power of two
greater than z, then NPB(y-s+2) = NPB(y) +NPB(z). It is important to realize
that provability (in a theory in general, and in PA in particular) is the same as
validity in all models. Thus it is good to think of powers of two, the arguments
of the exponential function etc. as nonstandard elements of some model of PA.
If M is such a model, it contains nonstandard powers of two, but they behave
as expected. Binary expansions can have infinite (nonstandard) length but the
positive and negative bits in them can be counted, and z*™Y = 2% . 2¥ holds
whether x, y and z are standard or not.

3 Arithmetization of syntax

In this section we deal with syntactic notions formalized in PA. That is, we start
with variables and terms and proceed to proofs and provability. We assume that
the theory being formalized is PA itself. A straightforward modification of our
considerations would make it possible to work in PA with provability in some
other theory, say in the Zermelo-Fraenkel set theory ZF.

8 V. Svejdar

Since in PA we have numbers and nothing else, we have to specify coding
of syntactic objects with numbers. We opt for a coding method that we find
natural: characters are identified with their numerical codes, the numerical codes
are specified by the code table whose size is b, characters in a string w are the
digits in the b-ary expansion of w. In more detail, we assume that b = 128 and
that the code table is a modified ASCII table. The codes 32-126 are the same as
in the ASCII table, the slots 1-31 and 127 (in which the ASCII table has invisible
characters) contain characters that are needed in logic but do not occur in the
ASCII table (the quantifiers, the set epsilon, ...), no code is zero. For example,
if w is the number 83-b% +40-b® + 83-b* +40-b® + 48-b? + 41-b+41, then w is the
code of the string S(S(0)) because 83, 40, 48 and 41 are the codes (in both the
code table and in the ASCII table) assigned to the characters S, (, 0 and). We
write the characters themselves, typeset in the typewriter font, instead of their
numerical codes, and we identify strings with their numerical codes. Thus if w
is still the same number, we can write w = S(S(0)). We omit some of the bars
that indicate numerals if there is no danger of misunderstanding.

A number is a string if no digit in its b-ary expansion is 0. The length Lh(w)
of a string w is the least y such that w < b¥. The z-th symbol (w), of a
string w (looking from the left) is the number Div(Mod (w, b-h(®) =) pth(w)—z—1)
for z < Lh(w), and it is 0 otherwise. Thus for example, the number 0 is the
empty string and its length is 0. The number 0 (notice the typewriter font) is
a string having length 1, and we have (0)g = 0. We also have Lh(S(8(0))) =7
and (S(8(0))); = (S(8(0)))3 = 40 because 40 is the numerical code of the
character (. Being a string is obviously a Ap-formula. Since y = 27 is a Ag-for-
mula, also y = Lh(w) and y = (w),, are Ag-formulas. The concatenation wy *ws
of w; and ws is the number wq - bY"(®2) 4 o, We omit the symbol x (and write
just wyws) if it is clear that we deal with strings.

We need infinitely many variables when writing formulas, and we can assume
that there are only countably many of them and that they are indexed by natural
numbers. Therefore, we define that a variable is a nonempty string consisting
of the letter v followed by a binary expansion of a number. A binary expansion
of a number is a string s consisting of the digits 0 and 1 such that the leftmost
digit of s can be 0 only if Lh(s) = 1. Let Var(z) be the formula the number x
is a variable. Clearly, Var(z) is a Ag-formula. It does not matter (it does not
complicate syntax analysis) that the character 0 plays a double role: it appears
in indices of variables, and it is also a constant in the arithmetic language. For
example, the string version of the formula —Jvy(ve = 0) is =3v10(v10=0).

Let NOcc(u,w) be the number of occurrences of the character v in a string w.
We again want the function to be total, and thus we assume that it has some
(unimportant) values even if u is not a code of a character or if w is not a string.
This function can be derived from the function NPB as follows: y = NOcc(u, w)
if and only if there exists a number z not exceeding w such that: the length of
the binary expansion of z is Lh(w), for each = the a-th bit of z is positive if and

Do We Need Recursion? 9

only if (w), = u, and NPB(z) = y. Therefore, y = NOcc(u, w) is a Ag-formula.
It follows from the summation property of NPB that if w; and wsy are strings,
then NOcc(u, wy * ws) equals NOcc(u, wy) + NOcc(u, ws).

Using the function NOcc we can define balanced strings, which is the key
concept that makes it possible to avoid primitive recursion in logical syntax. It
is taken from the part of [HP93] written by Pudldk. We again just add some
details and implementations to the treatment of syntax in [HP93]. A string w is
balanced if its length is at least 2, it contains the same number of left parentheses
as right parentheses (in symbols, NOcc((, w) = NOcc(),w)), and whenever u is a
nonempty proper initial segment of w, then NOcc((,u) > NOcc(),u). It is clear
that a balanced string must start with (and end with). If the concatenation uv
of two nonempty strings is balanced, then it follows from the summation property
that v contains less left parentheses than right parentheses. Important property
of balanced strings is this: two balanced substrings w and v of a string w can
overlap only if one of them is a substring of the other, and they can start at the
same position only if they also end at the same position.

A quasiterm is any variable, the (single-element) string 0, or any string of
the form S(w), +(w) or -(w) where (w) is a balanced string. Examples of
quasiterms are +((0)) and S(O) () ()). A quasiterm ¢ is a term (which we write
as Term(t)) if whenever (w) is a balanced substring of ¢, then either (w) is
immediately preceded by the letter S and w is a quasiterm, or it is immediately
preceded by + or - and w has the form w,v (notice the typewriter comma) where
u and v are quasiterms. Term(t) is a Ag-formula.

Notice that we write the binary symbols in front of their operands, not be-
tween them. To have at least one full proof, let us verify that if £ and s are terms
and u is the string +(¢,s), then u is a term. It is clear that a term contains
the same number of left parentheses as right parentheses. Therefore, u contains
the same number of left parentheses as right parentheses. Using the summation
property of the function NOcc and distinguishing the cases whether the leftmost
character of ¢ is +, -, v or 0, one can conclude that (¢,s) is a balanced string.
Thus u is a quasiterm. To finish the verification that it is a term, let v be a
balanced substring of u. Distinguish the three cases where the leftmost paren-
thesis of v is inside ¢, or it is inside s, or it is the leftmost character of (¢,s). In
the last case it follows from the property of balanced strings that v = (¢,s) and
thus v is as required in the definition of term (it is preceded by a binary symbol
and at the same time it consists of two comma-separated quasiterms surrounded
by parentheses). If the leftmost parenthesis of v is inside ¢, then the property
of balanced strings implies that v is a substring of ¢. Since t is a term, v is as
required. If the leftmost parenthesis of v is inside s, then v is as required as
well because s is a term. This argument is a proof of a part of claim (b) in
the following theorem. The remaining considerations in (b) and (c¢) are similar.
Claim (a) is straightforward, and (d) follows from (a)—(c).

10 V. Svejdar

Theorem 1 (a) PAF Term(0) & Vo(Var(v) — Term(v)).
(b) PAEIf t and s are terms, then S(¢), +(¢,s) and - (¢,s) are terms.

(c) PAF Every term w either (i) is the single-element string 0, or (ii) is a variable,
or (iii) has the form S(¢) where ¢ is a term, or (iv) has the form +(¢,s) or - (¢,s)
where ¢ and s are terms. The possibilities (i)—(iv) are mutually exclusive and, in (iv),
t and s are uniquely determined.

(d) The formulas Var(z) and Term(x) define the set of all variables and the set
of all terms respectively.

We see that exactly the same that was said in the previous section about
powers of two, about the exponential function and about the function NPB can
be said about variables and terms. The formulas Var(x) and Term(z) are Ay and
they not only define what they are supposed to define, but, if they are accepted
as definitions of variables and terms inside PA, then PA can prove the expected
properties of those notions. For example, every nonstandard model M of PA
contains infinitely (unboundedly) many terms, and every term w in M that is
not a variable or the constant 0 can be uniquely decomposed as w = +(¢,s) or
w = -(t,s) or w = S(t) where t and s are terms. If w is nonstandard and equals
+(t,s) or - (t,s), then at least one of t and s must be nonstandard.

The same that we did with variables and terms can be done with the other
syntactic notions. Thus we can introduce formulas Fla(z), OccT (v, t), OccF(v, 2),
Sent(z), FreeSub(v, z,t), SubF(v, z,t,y), and LogAx(z) that are Ay and express
that the string z is a formula, the string t is a term and v is a variable occurring
in t, the string z is a formula and v is a variable having free occurrences in z, the
string z is a sentence, the string t is a term substitutable for v in z, the string y is the
result of substituting a term ¢ for v in a formula z and the string z is a logical axiom
respectively. These formulas again have the expected properties. For example,
the claim every formula z is either atomic, or it can be uniquely decomposed as -1z1,
Vuzy, vz, (21222), (21&29) or (21Vze) where z; and 2y are formulas and v is a
variable can be proved in PA.

4 Conclusions

The use of primitive recursion can sometimes be replaced by the use of Ay con-
ditions and Ag-formulas. In particular, the basic syntactic notions in logic and
their properties are Ag, which is a more accurate result than that they are prim-
itive recursive. This result makes the arithmetization of syntax more natural.
Ao-formulas that describe terms, formulas etc. are in fact close to computer
programs that would decide about a string whether it is a term, a formula, etc.

Do We Need Recursion? 11

References

[Ben62] J. H. Bennet. On Spectra. Dissertation, Princeton University, Princeton,
NJ, 1962.

[Fef60] S. Feferman. Arithmetization of metamathematics in a general setting.
Fundamenta Mathematicae, 49:35-92, 1960.

[HP93] P. Héjek and P. Pudldk. Metamathematics of First Order Arithmetic.
Springer, 1993.

[0di89] P. Odifreddi. Classical Recursion Theory. North-Holland, 1989.

[Pud83] P. Pudldk. A definition of exponentiation by a bounded arithmetical
formula. Comm. Math. Univ. Carolinae, 24(4):667-671, 1983.

[SveQO] V. Svejdar. Logic: Incompleteness, Complexity, and Necessity. College
Publication, London, 2020. In preparation.

http://dml.cz/handle/10338.dmlcz/106264
http://dml.cz/handle/10338.dmlcz/106264
http://www.karlin.mff.cuni.cz/cmuc/cmucemis/cmucemis.html

	What is recursion, where do we meet it?
	Bounded conditions and bounded formulas
	Arithmetization of syntax
	Conclusions

