Exercises to Properties of axriomatic theories
(January 15, 2024)

Exercises

1. Let P and @ be unary and R a binary predicate. Prove that the following
sentences are logically valid, but reverting the outermost implication yields
(in all cases) a formula that is not logically valid:

Jz(P(z) & Q(x)) — FxP(z) & F=Q(x),
VaP(x) VVzQ(z) = Vo (P(x) V Q(x)),
JaVyR(x,y) — YyIxR(z,y),

Va(P(z) = Q(z)) = (VaP(z) - V2Q()).
Ve(P(z) = Q(z)) = (zP(z) — JzQ(x)).

2. Which of Vz(P(z) = VYyP(y)), 3z(P(z) — VyP(y)) and Jz(IyP(y) — P(zx))
are logically valid sentences?

3. For every sentence from the previous two exercises that is logically valid prove
its provability in the Hilbert-style calculus. Use tautological consequences
and the fact that all tautologies are provable, but avoid using the predicate
completeness theorem (otherwise there would be nothing to do).

4. Show that A ¢ | ¢ if and only if A |= ¢ — ¢ for any formulas ¢ and 3 and
any set A of formulas.

5. Theories T and S are equivalent if every axiom of S is a consequence of T,
and at the same time every axiom of T os a consequence of S. Prove that T’
and S are equivalent if and only if they have the same models (that is, every
model of T is a model of S and vice versa).

6. Let ¢ be a formula in a language L. Consider the conditions (i) there exists a
number n and terms t1, .., ¢, of L such that ¢, (t1)V .. V. (t,) is a logically
valid formula, and (ii) the formula Jxy is logically valid. Show that (ii) is a
consequence of (i) but (ii) = (i) is not necessarily true.

Hint. Let L be {P} and let ¢ be the formula P(z) —VvP(v). Since there are
no function symbols, t1,..,t, must be variables, say z1, .., z, with possible
repetitions. However, no disjunction of the form \/,(P(z;) — YvP(v)) is
logically valid.
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The claim that if ¢ is open, then conditions (i) and (ii) in the previous exer-
cise are equivalent is true and is known as the Hilbert-Ackermann theorem.
This theorem was omitted in the course. Explain that one term would not
be enough: if ¢ is an open formula in L and 3z is logically valid, then there
may not exist a single term ¢ of L such that o, (t) is logically valid.

Hint. Pick the language {P, F'} containing a unary predicate and a unary
function and consider the formula P(z)V —P(F(z)). The term ¢ must have
the form F("™)(z) where z is a variable.

For the formula ¢ from the above hint find an n and terms ¢q,..,t, of L
such that ¢, (t1) V .. V @z (t,) is logically valid.

Let the language of T be {€} and let its axioms be
VaVy(Vo(v Ex = v Ey) = = =1y),

JxVo-(v € z),

VaVydzVo(v €x Vv =y — v € 2).

(a) Use finite models to show that Va(z ¢ x) and -3zVv(v € x) cannot be
proved in T
(b) Prove that none of the axioms of T is provable from the remaining two.

Let T be a theory with an empty language and no axioms. Describe all
models of T. Find an extension S of T formulated in the same (empty)
language such that S is consistent and has no finite models.

For each of the structures (N, <), (Z, <) a (Q, <) find a sentence that is valid
in it but is not valid in the remaining two structures. Can also the structures
R and Q be distinguished by the validity of some sentence? And what about
(Z,+) and (Q,+)?

Show that the structures (R, <) a (R — {0}, <) are not isomorphic. Prove
that they are elementarily equivalent.

Hint. Every nonempty set bounded from above has the least upper bound
in (R,<). This is not true about (R — {0},<). The two structures are
models of the same complete theory.

Use Vaught’s test to show that the theory S from Exercise 10 is complete.

Show that if T" is equivalent (in the sense of Exercise 5) to some finite set of
sentences, then it is equivalent to its own finite subset. Conclude that the
theory S from Exercise 10 is not finitely axiomatizable. The theory SUCC
is not finitely axiomatizable either.
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Prove that if a class C of structures for a language L is axiomatizable and its
complement —C (that is, the class of all structures for L that are not in C)
is axiomatizable as well, then both C and —C are finitely axiomatizable.

Show that the class of all connected graphs, understood as structures for a
language with a binary predicate as the only symbol, is not axiomatizable.

Consider the class of all structures (D, P) for a language with a unary pred-
icate such that both P and D — P are infinite. Prove that this class is
axiomatizable. Is it finitely axiomatizable? For which x is the correspond-
ing theory k-categorical?

Show that the theory whose axioms are Q1-Q5 is a conservative extension
of the theory with axioms Q1-Q3.

Use the same method to prove that adding the axioms Q4 and Q5 to SUCC
yields a conservative extension of SUCC. Prove the same using the follow-
ing fact: every consistent extension of a complete theory is a conservative
extension. Explain that this fact is true. Prove that also Th((N, +,0,s)) is
a conservative extension of SUCC. Explain that this last claim cannot be
proved using the method from the previous exercise: no expansion of the
structure (N, 0,s)+(Z,s) is a model of Th({N, +,0,s)).

Hint. There is no realization of the symbol + such that the sentences

Vedy(x =y+y Vo =S(y+y)) and VaVyVz(z + 2 =2+ y — = =y) are
valid.

Let v be the sentence Vz(S(S(S(z))) =z — Iy((y +z) + z) + =z = y)).
Prove it in Q. Finish a proof, invented by Jan Urbanek, that Q is not a
conservative extension of the theory Q1-Q5.

Hint. To prove v in Q, work with y = x - . To show Q1-Q5 I/ ~, add
three nonstandard elements a, b and ¢ to the structure N and define that
SM(a) = b, SM(b) = ¢ and SM(c) = a. Define + so that it extends +
and satisfies a +Ma=b+Ma=cand c+Ma = a.

Put M = NU {a,b} and let a successor function on M be defined so that
the successor of a standard number n, the element a and the element b are
n + 1, b and a respectively. Show that there are (multiple) ways how to
define addition and multiplication on M so that the resulting structure M
is a model of Q.

Find out which of the following sentences are provable in Q:
Va(z < x) VaVy(zx+y=0 - 2=0 & y =0)
Ve(z <0 — =0) Vavy(z <y = S(z) < S(y))
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V(0 < VaVy(lx <y — x < S(y))

Vz(0 -z =0) Vavy(S(z) <y — = <y)

Vo(x -1 =) VaVy(z -y =0 - z=0V y=0)
Vavydz(z < z & y < 2) Ve(z <1 —=2=0V z=1)
Vi-(z < x) VaVyVz((z +y) +z = 2z + (y + x)).

VaVy(z <y = z <y V x=1y)

Hint. Unprovability can be proved by a suitable choice of operations in the
previous exercise, and just two models are sufficient.

Show that every natural number is a definable element of (N, <). Further-
more, let R be the relation { [a,b] ; |a —b] =1 }. Prove that every natural
number is a definable element of (N, R).

Use Post’s theorem to prove that if X C N? and Y C N? are RE sets such
that X UY is recursive and X NY = (), then both X and Y are recursive.

Show that if f : N — N is a strictly increasing recursive function, then its
range is recursive.

Prove that if R C N? is an equivalence having only finitely many classes
(equivalence classes) and is RE, then R must be recursive.

Hint. Let A; .., A, be a list of all equivalence classes of R. Explain in detail
the following facts. Every A; is RE, its complement is RE as well, and R can
be defined in terms of A7 .., A, via a recursive condition.

A function f : N? — N defined as f(ni,..,nq) = 1 for [n1,..,n,] € A and
f(n1,..,ng) = 0 for [nq,..,ne] ¢ A is called characteristic function of a
set A C N9. It is clear that if p(z,y) defines the graph of a characteristic
function f of A and is Xy, then ¢p(x,1) defines A and ¢(z,0) defines —A.
Thus A € A;. Show that the converse is also true: the characteristic function
of a recursive set must be recursive.

Show that if A is an r-ary recursive (or RE, or II;) condition and g1, .., g,
are recursive functions of ¢ variables, then { [n1,..,n4]; A(g1(n),..,g9-(n)} is
recursive (or RE, or II; respectively). Put otherwise, substituting recursive
functions into a A; (or RE, or II;) condition yields a Ay (or RE, or ITy)
condition.

Prove that Thm(T) = (N{ Thm(S) ; S is a complete extension of T' } holds
for any theory T'. Conclude that if the number of all complete extensions of T’
formulated in the same language is finite, and all of them are decidable, then
T is decidable. It follows that the theory obtained from DNO by removing
the axioms postulating the existence of the greatest and the least individual
is decidable.



30. Let T be a recursively axiomatizable extension of Q such that T is formulated
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in the arithmetic language and is sound (in the sense that N = T"). Find out
whether the following claims are true.

(a) If ¢ and v are sentences such that T'F ¢ V4, then T+ ¢ or T F .

(b) if ¢ and ¢ are Xj-sentences such that T+ ¢ V 4, then T + ¢ or T I 9.

Hint. In (a), use Godel’s first incompleteness theorem. In (b) apply the
Y-completeness theorem separately to ¢ and to .

In the same situation find out whether the following claims are true.

(a) If Jzp(z) is an arithmetic sentence such that T+ Jxp(x), then there
exists a number n such that T+ (7).

(b) If Jxp(x) is an arithmetic sentence such that T+ Jzp(x) and ¢ € Ay,
then there exists a number n such that T F (7).

Hint. In (a) pick a formula ¢ (y) € Ag such that N = Yy (y) and T t Yy (y).
The existence of a formula like that is guaranteed by Godel’s first incom-
pleteness theorem. Then consider the sentence 3xVy (¢ (y) V = (z)).



